Sở Giáo Dục ĐT Nam Định Câu 101: Tính đạo hàm của hàm số ( ) 2 y log 2x 1 . = + A. 2 y 2x 1 = + . B. ( ) 2y 2x 1 ln2 = + . C. ( ) 1y 2x 1 ln2 = + . D. 1 y 2x 1 = + . Câu 102: Tìm tập xác định Dcủa hàm số ( )13 y 2 x . −= − A. ( ) D; = −∞ +∞ . B. ( D ;2 = −∞ . C. ( ) D ;2 = −∞ . D. ( ) D 2; = +∞ . Câu 103: Tìm tất cả các giá trị thực của tham số m sao cho hàm số 32 m y x 7mx 14x m 2 3 = + + − + nghịch biến trên nửa khoảng ) 1; ? +∞ A. 14 ; 15 −∞ − . B. 14 ; 15 −∞ − . C. 14 2; 15 −− . D. 14; 15 − +∞ . Câu 104: Cho hàm số 32 y ax bx cx d = + + + có đồ thị như hình bên. Khẳng định nào sau đây là khẳng định đúng? A. a, b, c 0, d 0. B. a, b, d 0, c 0. >< C. a, c, d 0,b 0. >< D. a, d 0, b,c < 0. > Sở GD Bắc Ninh Câu 105: Cho hàm số ( ) y f x = có bảng biến thiên sau. Tìm mệnh đề đúng? A. Hàm số ( ) y f x = nghịch biến trên khoảng ( ) ;1−∞ . B. Hàm số đồng biến trên khoảng ( ) 1;1− . C. Hàm số ( ) y f x = đồng biến trên khoảng ( ) 2;2− . D. Hàm số ( ) y f x = nghịch biến trên khoảng ( ) 1; − +∞ . Câu 106: Tìm m để hàm số ( ) 2 x 16 khi x 4fx x4 mx 1 khi x 4 − >= − +≤ liên tục tại điểm x 4. = A. m8 =− . B. m8 = . C. 7 m 4 =− . D. 7 m 4 = . Câu 107: Hàm số 3y x 3x 2 =−+ có giá trị cực đại bằng A. 0. B. 20. C. 1 − . D. 4.
CHUYÊN ĐỀ HÀM SỐ Trích đề thi thử THPT 2018 Sở GD [phần 2] Sở Giáo Dục &ĐT Nam Định = Câu 101: Tính đạo hàm hàm số y log ( 2x + 1) A y ' = 2x + ( 2x + 1) ln B y ' = Câu 102: Tìm tập xác định D hàm số y= A D = ( −∞; +∞ ) B D = (2 − x) 1− ( −∞; 2] C y ' = ( 2x + 1) ln D y ' = 2x + C D = ( −∞; ) = D D ( 2; +∞ ) m x + 7mx + 14x − m + nghịch Câu 103: Tìm tất giá trị thực tham số m cho hàm số = y biến nửa khoảng [1; +∞ ) ? 14 A −∞; − 15 14 B −∞; − 15 14 C −2; − 15 14 D − ; +∞ 15 Câu 104: Cho hàm số y = a x + bx + cx + d có đồ thị hình bên Khẳng định sau khẳng định đúng? A a, b, c < 0, d > B a, b, d > 0, c < C a, c, d > 0, b < D a, d > 0, b, c < Sở GD Bắc Ninh Câu 105: Cho hàm số y = f ( x ) có bảng biến thiên sau Tìm mệnh đề đúng? −∞ x y' y - −1 + +∞ +∞ - −2 −∞ A Hàm số y = f ( x ) nghịch biến khoảng ( −∞;1) B Hàm số đồng biến khoảng ( −1;1) C Hàm số y = f ( x ) đồng biến khoảng ( −2; ) D Hàm số y = f ( x ) nghịch biến khoảng ( −1; +∞ ) x − 16 x > Câu 106: Tìm m để hàm số f ( x ) = x − liên tục điểm x = mx + x ≤ A m = −8 B m = C m = − D m = C −1 D Câu 107: Hàm số y = x − 3x + có giá trị cực đại A B 20 Câu 108: Cho hàm số y =f ( x ) liên tục có bảng biến thiên sau −1 −∞ x y' + y - +∞ + 2 −5 Mệnh đề đúng? A Đồ thị hàm số y = f ( x ) khơng có đường tiệm cận B Hàm số y = f ( x ) có điểm cực đại C Hàm số y = f ( x ) đồng biến ( −5; ) D Hàm số y = f ( x ) có cực tiểu -5 Câu 109: Các đường tiệm cận đồ thị hàm số y = A x = 1, y = −2 x −1 có phương trình x+2 B x = −2, y = A y ' 12cos4x − 2sin 4x = B y ' 12cos4x + 2sin 4x = D y ' 3cos4x − sin 4x = C y ' = −12cos4x + 2sin 4x Câu 111: Tìm giá trị lớn hàm số f ( x ) = Câu 112: Hàm số y = D = x 1,= y cos4x + 3sin 4x Câu 110: Tính đạo hàm hàm= số y A max f ( x ) = [1;4] C.= x 2,= y B max f ( x ) = [1;4] x đoạn [1; 4] x+2 C max f ( x ) = D Không tồn C D [1;4] 2x − có điểm cực trị? −x − A B Câu 113: Đường cong hình bên đồ thị bốn hàm số liệt kê Hỏi hàm số nào? A y =x − 3x + B y = 2x − 4x + −2x + 4x + C y = −2x + 4x D y = Câu 114: Trong hàm số sau, hàm số đồng biến tập xác định nó? A y = 2x − x+2 B y = x + 4x + y x2 +1 C = D y =x + 2x + C [ −1;1] D [ 0;1] Câu 115: Tập giá trị hàm số y = sin 2x A [ −2; 2] B [ 0; 2] Câu 116: Trong hàm số y tan = = x; y sin2x; = y sin = x; y cot x có hàm số thỏa mãn tính π ) f ( x ) ; ∀x ∈ ; k ∈ chất f ( x + k= B A C D Câu 117: Gọi S tập giá trị tham số m để đường thẳng d : y= x + cắt đồ thị hàm số y = 4x − m x −1 điểm Tìm tích phần tử S A B C D 20 Câu 118: Xét mệnh đề sau: (1)Nếu hàm số f ( x ) = x f ' ( x ) = (2)Nếu hàm số f ( x ) = x 2017 f ' ( x ) = (3)Nếu hàm số f ( x ) = x − 3x + phương trình f ' ( x ) = có nghiệm phân biệt A (1) ; ( ) B ( ) ; ( 3) C (1) ; ( ) ; ( 3) D ( ) Câu 119: Gọi S tập tất giá trị thực tham số m để đồ thị hàm số y = x − 2x + m − có tiếp tuyến song song với trục Ox Tìm tổng phần tử S A −2 C −5 B D Câu 120: Cho hàm số f ( x ) =x − 6x + 9x Đặt f k ( x ) = f ( f k −1 ( x ) ) với k số tự nhiên lớn Tính số nghiệm phương trình f ( x ) = A 729 B 365 C 730 Câu 121: Tìm tất giá trị thực tham số m để đồ thị hàm số y = D 364 x −1 2x − 2x − m − x − có bốn đường tiệm cận? A m ∈ [ −5; 4] \ {−4} B m ∈ ( −5; 4] C m ∈ ( −5; ) \ {−4} D m ∈ ( −5; 4] \ {−4} Sở Giáo Dục Ninh Bình y Câu 122: Tìm tập xác định hàm số= (x − 1) −2 B D = A D = C D = ( −1;1) Câu 123: Cho hàm số y = ( −∞; −1) ∪ (1; +∞ ) D \ {±1} D.= x −3 Mệnh đề đúng? x+2 A Hàm số nghịch khoảng xác định D B Hàm số đồng biến khoảng xác định C Hàm số đồng biến khoảng ( −∞; +∞ ) D Hàm số nghịch biến khoảng ( −∞; +∞ ) P f '' ( π ) Câu 124: Cho hàm số f ( x ) = cos2x Tính = A P = C P = −4 B P = D P = −1 Câu 125: Gọi d tiếp tuyến điểm cực đại đồ thị hàm số y =x − 3x + Mệnh đề đúng? A d song song với đường thẳng y = B d song song với đường thẳng x = C d có hệ số góc âm D d có hệ số góc dương Câu 126: tất giá trị nguyên tham số m để hàm số y= x − mx + x + 2018 đồng biến ? A B C D Câu 127: Đường cong hình bên đồ thị bốn hàm số Đó hàm số nào? A y = 2x + ( x + 1) B y = x+2 x +1 C y = 2x + ( x + 1) D y = x −1 x +1 Câu 128: Đồ thị hàm số khơng có tiệm cận ngang? A y = 2−x − x2 B y = x2 + x +1 − 2x − 5x C y = x − 3x + x +1 D y = x +1 x −1 Câu 129: Hàm số nghịch biến tập xác định nó? x e A y = 2 x B y = 6− 5 x C y = 3+2 π+3 D y = 2π x Câu 130: Cho hàm số y = f ( x ) Hàm số y = f ' ( x ) có đồ thị hình bên Tìm số điểm cực trị hàm số y = f ( x ) A B C D Câu 131: Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x + 1) ( − x )( x + 3) Mệnh đề đúng? A Hàm số nghịch biến khoảng ( −3; ) B Hàm số nghịch biến khoảng ( −3; −1) ( 2; +∞ ) C Hàm số đồng biến khoảng ( −∞; −3) ( 2; +∞ ) D Hàm số đồng biến khoảng ( −3; ) Câu 132: Cho hàm số y = f ( x ) có bảng biến thiên x −1 −∞ f '( x ) + f (x) − + +∞ +∞ −2 −2 −∞ Tìm tất giá trị thực tham số m để phương trình f ( x ) = f ( m ) có ba nghiệm phân biệt A m ∈ ( −2; ) B m ∈ ( −1;3) \ {0; 2} C m ∈ ( −1;3) D m ∈ [ −1;3] \ {0; 2} Câu 133: Cho hàm số y = f ( x ) có đạo hàm Ρ có đồ thị đường cong hình vẽ bên Đặt g ( x ) = f g ( x ) Tìm số nghiệm phương trình g ( x ) = A B C D Câu 134: Gọi A tập tất giá trị thực tham số m cho tập nghiệm phương trình x.2 x= x ( x − m + 1) + m ( x − 1) có hai phần tử Tìm số phần tử A A B Vô số C D Liên trường Sở Nghệ An − x + ( m − ) x + có ba điểm cực trị Câu 135: Tìm tất giá trị tham số m để hàm số y = A m ≥ B m ≤ Câu 136: Gọi M giao điểm đồ thị hàm số y = C m < D m > x +1 với trục hồnh Phương trình tiếp tuyến với đồ x−2 thị hàm số điểm M là: A 3y + x + = B 3y + x − =0 C 3y − x + = D 3y − x − =0 Câu 137: Cho hàm số y = f ( x ) có bảng biến thiên hình đây: x −∞ y' + +∞ - + +∞ y −∞ Câu 138: Phương trình đường tiệm cận đứng tiệm cận ngang đồ thị hàm số y = 2x − 1− x là: A x = −1; y = −2 B x = −2; y = Câu 139: Cho hàm số y = x + C x = 1; y = −2 D = x 1;= y − Mệnh đề sau sai? x A Hàm số có giá trị cực tiểu B Hàm số đạt cực đại x = C Giá trị cực đại hàm số -4 D Hàm số có hai điểmcực trị Câu 140: Tìm mệnh đề sai mệnh đề sau: y ln ( − x ) khơng có đường tiệm cận ngang A Đồ thị hàm số = B Hàm số y = ln x cực trị C Hàm số y = ln x có điểm cực tiểu D Hàm số y = ln x nghịch biến khoảng ( −∞;0 ) Câu 141: Hàm số sau đồng biến ? x −1 x+2 B y = A y = ln x C y = x + 2x − D y =x + 2x + Câu 142: Giá trị lớn M hàm số y = x + 3x − 9x − đoạn [ −1; 2] là: B M = −12 A M = 20 Câu 143: Đạo hàm hàm số y= (5 − x ) (5 − x ) B y ' = x −5 A y ' = − ( − x ) ln − x C y ' = ( x − 5) −1 D M = C M = D = y' (5 − x ) −1 x2 + x − x > Câu 144: Cho hàm số f ( x ) = x − Xác định a để hàm số liên tục điểm x = −2a x + x ≤ A a = B a = C a = D a = −1 Câu 145: Đường cong hình bên đồ thị bốn hàm số Hàm số hàm số nào? A y = −2x + 2x + B y = −x + x +1 C y = −x + x +1 D y = −x x +1 Câu 146: Có giá trị nguyên tham số m để hàm số y = mx − đồng biến khoảng x−m+2 xác định? A B C D Vô số Câu 147: Cho hàm số y =x − mx + m với m tham số, có đồ thị ( C ) Biết đồ thị ( C ) cắt trục 30 hoành điểm phân biệt có hồnh độ x1 , x , x , thỏa mãn x x14 + x 24 + x 34 + x 44 = m = m Hỏi mệnh đề sau đúng? A < m ≤ B < m < C m > D m ≤ −2 Câu 148: Cho hàm số bậc ba f ( x ) = ax + bx + cx + d có đồ thị hình vẽ bên dưới: Hỏi đồ thị hàm số g ( x ) (x = A B − 3x + ) x − x f ( x ) − f ( x ) có đường tiệm cận đứng? C D Câu 149: Đồ thị hàm số y = 15 x − x − 2018 cắt trục hoành điểm? A điểm B điểm C điểm D điểm Sở Giáo Dục Và Đào Tạo Hà Nội Câu 150: Đồ thị hàm số y = 1− 1− x có đường tiệm cận đứng đường tiệm cận ngang? x A B C D Câu 151: Biết hình đồ thị bốn hàm số sau, hỏi đồ thị hàm số nào? y x4 − 2x2 A = B y =x − x + − x4 + x2 C y = y x4 + 2x2 D = y x + mx Câu 152: Tìm tất giá trị thực tham số m để hàm số = đạt cực tiểu x = A m ≥ B m > C m = D m ≤ Câu 153: Đạo hàm hàm số= y ln (1 − x ) là: A x −1 B x − x2 C −2 x x2 −1 D 2x x −1 Câu 154: Hàm số y = f ( x ) có đạo hàm y′ = x Mệnh đề đúng? A Hàm số đồng biến ( −∞;0 ) nghịch biến ( 0; +∞ ) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số nghịch biến ( −∞;0 ) đồng biến ( 0; +∞ ) y x − 14 Câu 155: Cho hàm số y = x − x + có đồ thị (C) Hỏi có điểm đường thẳng = cho từ kẻ hai tiếp tuyến đến ( C ) A điểm B điểm C điểm D điểm Câu 156: Cho hàm số y = f ( x ) Biết hàm số y = f ′ ( x ) có đồ thị hình vẽ bên Hàm số= y f ( − x ) đồng biến khoảng A ( 2;3) B ( −2; −1) C ( 0;1) D ( −1;0 ) Câu 157: Phương trình x − 512 + 1024 − x = 16 + ( x − 512 )(1024 − x ) có nghiệm? A nghiệm B nghiệm C nghiệm D nghiệm Sở Giáo Dục-ĐT Bình Phước Câu 158: Cho hàm số y = f ( x ) có lim f ( x ) = lim f ( x ) = −1 Khẳng định sau x →+∞ x →−∞ A Đồ thị hàm số cho có tiệm cận ngang đường thẳng có phương trình x = x = −1 B Đồ thị hàm số cho có tiệm cận ngang C Đồ thị hàm số cho khơng có tiệm cận ngang D Đồ thị hàm số cho có tiệm cận ngang đường thẳng có phương trình y = y = −1 Câu 159: Cho hàm số y = f ( x ) có bảng biến thiên sau x −∞ y' + y +∞ − + +∞ −2 −∞ Khẳng định sau đúng? A Hàm số đạt cực đại x = B Hàm số đạt cực đại x = −2 C Hàm số đạt cực đại x = D Hàm số đạt cực đại x = x+4 −2 x > x Câu 160: Cho hàm số f ( x ) = , m tham số Tìm giá trị m để hàm số có giới mx + m + x ≤ hạn x = A m = B m = C m = D m = − Câu 161: Có giá trị nguyên tham số m [ −1;5] để hàm số y = x − x + mx + đồng biến khoảng ( −∞; +∞ ) ? A B C D Câu 162: Cho hàm số y =x − 6x + 9x có đồ thị Hình 1, Đồ thị Hình hàm số A y =x + x + x B y = x − 6x + x − x + 6x − 9x C y = D y = x − 6x + 9x Câu 163: Cho hàm số y = x3 − ax − 3ax + 4, với a tham số Để hàm số đạt cực trị x1 , x thỏa mãn x12 + 2ax + 9a a2 + = a thuộc khoảng nào? a2 x 22 + 2ax1 + 9a 7 A a ∈ −5; − 2 B a ∈ − ; −3 C a ∈ ( −2; −1) 5 D a ∈ −3; − 2 C y =x − 3x − D y =x − 3x + Câu 164: Đồ thị sau hàm số nào? − x − 3x − A y = − x + 3x − B y = Câu 165: Cho hàm số y = x − 3x + Khẳng định sau sai? A Hàm số đồng biến (1; ) B Hàm số đồng biến khoảng ( −∞; −1) (1; +∞ ) C Hàm số nghịch biến ( −1; ) D Hàm số nghịch biến ( −1;1) Câu 166: Cho hàm số y = x − 3x + có đồ thị ( C ) Tiếp tuyến với ( C ) giáo điểm ( C ) với trục tung có phương trình −3x − A y = y 3x − B = y 3x + C = Câu 167: Tính tích giá trị nhỏ giá trị lớn hàm số f ( x )= x + A 20 B 52 C −3x + D y = [1; 4] x D 65 Câu 168: Cho hàm số y =x − 2x − có đồ thị hàm số hình bên Với giá trị tham số m để phương trình x − 2x − 3= 2m − có hai nghiệm phân biệt m < A m = B m ≤ C < m < m = D m > Câu 169: Cho hàm số y = f ( x ) liên tục có đạo hàm [ 0;6] Đồ thị hàm số y = f ' ( x ) đoạn [0;6] cho hình bên Hỏi hàm số A B y = f ( x ) có tối đa cực trị C D 10 Câu 146: Đáp án B = D \ {m − 2}= Ta có : y ' TXĐ: m∈ ⇔ −2 < m < →m = m (2 − m) + ( x − m + 2) > ⇔ −m + 2m + > {−1;0;1; 2;3} Do có giá trị nguyên m Câu 147: Đáp án A ( *) Phương trình hồnh độ giao điểm ( C ) Ox x − mx + m = t x ≥ 0, (*) ⇔ f ( t ) = t − mt + m = Đặt = có nghiệm dương phân biệt ⇔ m > Để (*) có nghiệm phân biệt ⇔ f ( t ) = Khi đó, gọi t1 , t ( t1 < t ) hai nghiệm phân biệt f ( t ) = ( ) − t2 ; x2 = − t1 ; x =t1 ; x =t ⇒ x14 + x 24 + x 34 + x 44 = t12 + t 22 = 30 Suy x1 = m m > t + t = Mà ⇔m= ⇒ t12 + t 22 = ( t1 + t ) − 2t1t = m − 2m suy 15 t1 t = m m − 2m = Câu 148: Đáp án B Dễ thấy x = không tiệm cận đứng đồ thị hàm số TXĐ: x ≥ f ( x ) = (1) Ta xét phương trình: f ( x ) − f ( x ) = 0⇔ f ( x ) = ( ) Dựa vào đồ thị hàm số, ta thấy (nghiệm kép) Phương trình (1), có hai nghiệm phân biệt x1 < 1; x = 1; x ∈ (1; ) ; x > Phương trình (2), có ba nghiệm phân biệt x = Do f ( x ) − f ( x ) = ( x − 1)( x − ) h ( x ) suy g ( x ) = x −1 x.h ( x ) Mà h ( x ) = có nghiệm lớn ( 2; x ; x ) ⇒ ĐTHS y = g ( x ) có đường TCĐ Câu 149: Đáp án D Phương pháp: Xét tương giao đồ thị hàm số y = f ( x ) với trục hoành Số giao điểm đồ thị hàm số y = f ( x ) với trục hoành số nghiệm phương trình hồnh độ giao điểm f ( x ) = Cách làm: 22 (*) Đặt x = t ≥ ta Xét phương trình hồnh độ giao điểm 15 x − x − 2018 = 15t − 3t − 2018 = (1) Vì a.c = 15 ( −2018 ) < nên phương trình (1) có hai nghiệm trái dấu Suy phương trình (*) có hai nghiệm nên đồ thị hàm số y = 15 x − x − 2018 cắt trục hoành hai điểm phânbiệt Câu 150: Đáp án B Phương pháp: Sử dụng định nghĩa tiệm cận đứng tiệm cận ngang Đường thẳng y = a tiệm cận ngang đồ thị hàm số y = f ( x ) điều kiện sau thỏa mãn= lim f ( x ) a= ; lim f ( x ) a x →+∞ x →−∞ Đường thẳng x = b tiệm cận đứng đồ thị hàm số y = f ( x ) điều kiện sau thỏa mãn lim+ f ( x ) = +∞, lim− f ( x ) = +∞; lim+ f ( x ) = −∞, lim− f ( x ) = −∞ x →b x →b x →b x →b Cách làm: ĐK: x ≤ 1; x ≠ 1 + 2− 1− 1− x x x x nên y = tiệm cận ngang đồ thị hàm số Ta có = lim lim = x →−∞ x →−∞ x y= 1− 1− x x − (1 − x ) 1− 1− x x 1 Xét= lim lim = lim == lim ≠ ∞ nên đồ thị hàm số không x →0 x → x → x → x 1+ 1− x x 1+ 1− x x 1+ 1− x ( ) ( ) có tiệm cận đứng Câu 151 Đáp án A Phương pháp: Sử dụng nhận xét: Hàm số bậc bốn trùng phương có ba điểm cực trị ab < nhận xét dáng đồ thị để loại đáp án Cách giải: Đồ thị hàm số có ba điểm cực trị nên ab < , ta loại D Hàm số có lim y = +∞ nên a > , ta loại C x →∞ Ngoài đồ thị hàm số qua điểm ( 0;0 ) nên loại B Câu 152 23 Đáp án A Phương pháp: f ′ ( x0 ) = +) Hàm số y = f ( x ) đạt cực tiểu điểm = x x0 ⇔ f " ( x0 ) > Cách giải: Ta có: y′ = x + 2mx ⇒ y " = 12 x + 2m y′ ( ) = 0 x = Hàm số đạt cực tiểu x =0 ⇔ ⇔ ⇔ m>0 m > " 0 y > ( ) Với m = 0, hàm số có dạng y = x có y′ = x = ⇔ x = y′ > ⇔ x > 0, y′ < ⇔ x < , qua x = y’ đổi dấu từ âm sang dương, nên x = điểm cực tiểu hàm số Vậy m = thỏa mãn Câu 153 Đáp án D Phương pháp: u′ +) Áp dụng công thức đạo hàm hàm hợp: ( ln u )′ = u Cách giải: ( Ta có: y′ = ln (1 − x )) ′ − x )′ ( = = 1− x −2 x 2x = 2 1− x x −1 Câu 154 Đáp án B Phương pháp: Hàm số y = f ( x ) đồng biến (nghịch biến) ( a; b ) f ′ ( x ) ≥ ( f ′ ( x ) ≤ ) ∀x ∈ ( a; b ) f ′ ( x ) = hữu hạn điểm Cách giải: y′= x ≥ 0∀x ∈ y′ = ⇔ x = Vậy hàm số cho đồng biến R Câu 155 Đáp án C Phương pháp: f ′ ( x0 )( x − x0 ) + y ( x0 ) ( d ) Viết phương trình tiếp tuyến đồ thị hàm số điểm có hồnh độ x= : y Lấy điểm A ( a;9a − 14 ) thuộc đường thẳng = y x − 14 , cho A ∈ d ⇒ pt (1) 24 Để từ A kẻ hai tiếp tuyến đến (C) phương trình (1) có nghiệm phân biệt Tìm điều kiện a để phương trình có nghiệm phân biệt Có giá trị a có nhiêu điểm thỏa mãn yêu cầu toán Cách giải: TXĐ : D = R Ta có : = y′ 3x − Phương trình tiếp tuyến đồ thị ( C ) điểm M ( x0 ; x03 − x0 + ) là: y= ( 3x − 3) ( x − x0 ) + x03 − x0 + ( d ) Lấy điểm A ( a;9a − 14 ) ∈ ( y = x − 14 ) , A ∈ d nên ta có : 9a − 14= ( 3x − 3) ( a − x0 ) + x03 − x0 + (1) ⇔ 9a − 14= 3ax02 − x03 − 3a + x0 + x03 − x0 + ⇔ −2 x03 + 3ax02 − 12a + 16 =0 ⇔ ( x0 − ) ( −2 x02 + ( 3a − ) x0 + 6a − ) = = x0 − = x0 ⇔ ⇔ 2 8 ( 2) −2 x0 + ( 3a − ) x0 + 6a −= −2 x0 + ( 3a − ) x0 + 6a −= Để qua A kẻ tiếp tuyến đến đồ thị ( C ) phương trình (1) có nghiệm phân biệt TH1 : x0 = nghiệm phương trình (2) ta có : −2.22 + 6a − + 6a − =0 ⇔ a =2 x = Khi phương trình (2) có dạng −2 x02 + x0 + = ⇔ ⇒ phương trình (1) có nghiệm phân biệt Vậy x0 = −1 a = thỏa mãn TH2 : x0 = khơng nghiệm phương trình (2), để (1) có nghiệm phân biệt (2) có nghiệm kép = a= ∆ ( 3a − ) + ( 6a − 8= ) ⇔ 9a + 24a − 48 = ⇔ ⇔ a ≠ a ≠ a = −4 Vậy có giá trị a thỏa mãn yêu cầu toán Chú ý sai lầm: Cần phải làm hết trường hợp để phương trình (1) có nghiệm, tránh trường hợp thiếu TH1 chọn nhầm đáp án B Câu 156 Đáp án D Lời giải 25 ′ Ta có f ( − x ) =−2 x f ′ ( − x ) > ⇔ f ′ ( − x ) trái dấu với x Ta thấy có khoảng ( −1;0 ) x âm < − x < f ′ ( − x ) > (theo đồ thị) nên f ( − x ) đồng biến ( −1;0 ) Câu 157 Đáp án D Lời giải: Đặt t = t= ( x − 512 )(1024 − x ) ≥ ( x − 512 )(1024 − x ) ≤ ta có x − 512 + 1024 − x = 256 ⇒ ≤ t ≤ Với t = ta tìm giá trị x = 768 Với ≤ t ≤ ta tìm giá trị x (Khi phương trình Định lý Viét đảo có nghiệm phân biệt) Bình phương vế phương trình cho, ta x − 512 + 1024 − x + 2t 4= 256 + 128t + 16t ⇔ t − 8t − 64t + 128 = ⇔ ( t − ) ( t + 4t + 8t − 32 ) = Từ t = ta có nghiệm x = 768 Ta thấy phương trình t + 4t + 8t − 32 = có nghiệm t= t0 ≈ 1, 76 (sử dụng máy tính) Từ ta có nghiệm x thỏa mãn Do phương trình cho có nghiệm Câu 158: Đáp án D Câu 159 Đáp án C Câu 160 Đáp án C x+4 −2 = lim+ f ( x ) lim = lim + x →0 x →0 x → 0+ x ( )( ) x+4 −2 x+4+2 1 = lim= + x →0 x x+4+2 x+4+2 ( ) ( ) 1 f ( ) = lim− f ( x ) = lim− mx + m + = m + x →0 x →0 4 Hàm số có giới hạn x = ⇒ lim+ f ( x ) = lim− f ( x ) ⇒ m + x →0 x →0 1 = ⇒m=0 4 Câu 161 Đáp án B 26 Ta có y ' = x − 2x + m Hàm số đồng biến ( −∞; +∞ ) ⇒ y ' ≥ 0, ∀x ∈ ( −∞; +∞ ) ⇒ ∆ ' = − m ≤ ⇔ m ≥ ⇒ ≤ m ≤ Suy có giá trị nguyên dương m thỏa mãn đề Câu 162 Đáp án B Câu 163 Đáp án A Ta có y ' =x − 2ax − 3a Hàm số có cực trị ⇔ PT : x − 2ax − 3a = có nghiệm phân biệt ⇔ ∆=' a + 3a > 2a x + x = Khi theo viet ta có x1.x = 3a Lại có x − 2ax − 3a ⇒ x = 2ax + 3a ⇒ T= ⇔ 2ax1 + 3a + 2ax + 9a a2 + = a2 2ax + 3a + 2ax1 + 9a 2a ( x1 + x ) + 12a a2 4a + 12 a + = 2⇔ + = 2 a 2a ( x1 + x ) + 12a a 4a + 12 a = −4 4a + 12 → t= = ±1 ⇔ a = − 12 a t= 4a +12 a Kết hợp ĐK suy a = −4 Câu 164 Đáp án B Ta có lim f ( x ) = −∞ ⇒ a < (loại C D) x →∞ Do đồ thị hàm số đạt cực trị điểm= x 0,= x (loại A) Câu 165 Đáp án C x > y ' > ⇔ Ta có y =' 3x − 3= ( x − 1)( x + 1) ⇒ x < −1 y ' < ⇔ −1 < x < Suy hàm số đồng biến khoảng ( −∞; −1) (1; +∞ ) , nghịch biến ( −1;1) Câu 166 Đáp án D 27 Gọi A ( 0;1) giao điểm ( C ) trục tung Ta có y ' =3x − ⇒ y ' ( ) =−3 Suy PTTT với ( C ) A y =−3 ( x − ) + ⇔ y =−3x + Câu 167 Đáp án A Ta có f ' ( x ) =− ⇒ f '( x ) = 0⇔x= ±2 x2 max f ( x ) = [1;4] Suy f (1) = 5, f ( ) = 4, f ( ) = 5⇒ ⇒ max f ( x ) f ( x ) = 20 [1;4] [1;4] f x = ( ) [1;4] Câu 168 Đáp án D m = 2m − > −3 Phương trình có hai nghiệm phân biệt ⇔ m > 2m − =−4 Câu 169 Đáp án C f ( x ) = = → y ' 2f ( x ) f ' ( x ) Phương trình y =' ⇔ Ta có y f ( x ) = f ' ( x ) = Trên đoạn [ 0;6] ta thấy f ' ( x ) = có nghiệm phân biệt, f ( x ) = có tối đa nghiệm phân biệt Do đó, y ' = có tối đa nghiệm phân biệt ⇒ Hàm số có tối đa điểm cực trị Câu 170 Đáp án A Hàm số nghịch biến ( −2;0 ) nên hàm số nghịch biến ( −2;0 ) Câu 171 Đáp án B 3 Hàm số xác định liên tục ; 2 28 3 x ; Ta có ⇔x= 4 f ( x ) =− x − ⇒ f ' ( x ) =−1 + =0 x x2 25 3 Tính f =− ;f ( ) =−5;f ( ) =−4 ⇒ max f ( x ) =−4 3 2 ;4 Câu 172 Đáp án C Hàm số cần tìm hàm số bậc ba mà lim = +∞ ⇒ a < x →−∞ Câu 173 Đáp án D Ta có y ' = ln x + x ⇒ y ' ( e ) = ⇒ d : y = ( x − e ) + e.ln e ⇔ y = 2x − e x Câu 174 Đáp án D Ta có ( f ( x ) ) f ( x ) = − 3f ( x ) + = ⇔ f ( x ) = Số nghiệm phương trình f ( x ) = m số giao điểm đồ thị hàm số y = f ( x ) đường thẳng y = m Phương trình f ( x ) = có nghiệm Phương trình f ( x ) = có nghiệm Câu 175 Đáp án B Ta= có y ' − m2 ( x + 4) > ⇒ − m ⇔ −2 < m < 2; m ∈ ⇒ m ∈ {−1;0;1} Câu 176 Đáp án D Tọa độ điểm cực đại ( 0; −3) Câu 177 Đáp án C f ( x ) , ∀x ∈ (1; ) ⇔ m ≤ f (1= YCBT ⇔ y=' 4x − 4mx ≥ 0, ∀x ∈ (1; ) ⇔ m ≤ x = ) 29 m ∈ Mà ⇒ m ∈ {0;1} m ≥ Câu 178 Đáp án B Hàm số xác định liên tục [ −1; 4] x ∈ ( −1; ) Ta có ⇔x= y =' 3x − 3= Tính y ( −1) =3; y ( ) =53; y (1) =−1 ⇒ y =−1 [ −1;4] Câu 179: Đáp án B ⇒ TCN : y = lim y = x →+∞ Ta có y= ⇒ TCN : y = xlim →−∞ Câu 180 Đáp án A Đồ thị hàm số y = 3x + có TCN Đáp án A x −1 Đồ thị hàm số y = 3x + có TCN x −1 Câu 181 Đáp án A Gọi M ( a;a − 3a ) suy PTTT M là: y= ( 3a − 3) ( x − a ) + a − 3a ( d ) −a + 3a Ta có: d= ∩ Ox B + a;0 3a − Phương trình hồnh độ giao điểm d ( C ) : x − 3x= ⇔ ( x − a ) ( x + ax + a ) − ( x − a )= ( 3a ( 3a − 3) ( x − a ) + a − 3a − 3) ( x − a ) ⇔ ( x − a ) ( x + a x − 2a ) =0 ⇔ ( x − a ) ( x + 2a ) =0 ⇔ x =−2a ⇒ A ( −2a; −8a + 6a ) yA + yB Do A, M, B thuộc tiếp tuyến d nên để M trung điểm AB thì: 2y= M a = ⇔ 2a − 6a = −8a + 6a ⇔ 10a = 12a ⇔ a = ± 3 30 Do M ≠ ⇒ a ≠ ⇒ a =± Vậy có điểm M thỏa mãn yêu cầu Câu 182: Đáp án D Xét hàm số f ( x ) = x − 2x + m đoạn [ −1; 2] Ta có: f ' ( x ) = 2x − = ⇒ x = Lại có: f ( −1) = m + 3;f (1) = m − 1;f ( ) = m Do f ( x ) ∈ [ m − 1; m + 3] Nếu m − ≥ ⇒ Max f ( x ) = m + = ⇔ m = [0;2] Max f ( x )= m + [0;2] Nếu m − < ⇔ m < suy Max f ( x ) = − m [0;2] • TH1: Max f ( x ) = m + = ⇔ m = ( ko _ t / m ) [0;2] • TH2: Max f ( x ) =1 − m =5 ⇔ m =−4 ⇒ m + =−3 ( t / m ) [0;2] Vậy m = 2; m = −4 giá trị cần tìm Câu 183 Đáp án A Ta giả sử f ' ( x ) =x ( x + )( x + 1) ( ) Khi đó: f x − 2x ' = ( 2x − ) f ' ( x − 2x ) = ( x − 1) ( x − 2x )( x − 2x + )( x − 2x + 1) ( ) = y f x − 2x có điểm cực trị = x 0;= x 1;= x = ( x − 1) x ( x − ) ( x − 2x + ) suy hàm số Câu 184 Đáp án C Đặt m + b = m + b = a2 a ⇔ m + e = a;e = b ( a ≥ 0; b > ) ta có: b b2 m + a = m + a = x x a2 a2 m = a2 − b m + b = m + b = ( Do a ≥ 0; b > ) ⇔ ⇔ ⇒ 2 a = b b − a = a − b ( a − b )( a + b + 1) = Khi m =b − b ( b > ) Do b − b ≥ − 1 ( ∀b > ) nên phương trình có nghiệm m ≥ − 4 31 Do có 10 giá trị nguyên m ∈ − ;10 thỏa mãn yêu cầu toán Câu 185 Đáp án B Câu 186 Đáp án A Câu 187 Đáp án A Câu 188 Giá trị lớn hàm số y = A −13 x − 3x + đoạn x −1 C −3 B 1 −2; D − Đáp án C Câu 189 Đáp án A Câu 190 Đáp án B Câu 191 Đáp án D Câu 192 Đáp án A f ( 0) > f ( 2) f ( ) − f ( ) > TH1: ⇒ f ( 3) > f ( ) f ( 3) − f ( ) > (BBT ví dụ điểm cực trị khác 2) x f ( x) f ( 0) f ( 3) f ( 2) f ( 0) < f ( 2) f ( ) − f ( ) < TH2: ⇒ f ( 3) < f ( ) f ( 3) − f ( ) < BBT: x f ( x) f ( 2) f ( 0) f ( 3) ⇒ Hàm số f ( x ) chắn có cực trị ∈ ( 0;3) Mà f ( x ) hàm bậc ⇒ f ( x ) có cực trị Câu 193 Đáp án B 32 y= x+2 có TCN: y = TCĐ: x = −1 x +1 m+2 I ( −1;1) , M ∈ đồ thị ⇒ gọi M m; m +1 m+2 ⇒ IM = m + 1; − 1 m +1 IM = m + 1; m +1 ( m + 1) IM = + ( m + 1) ≥ m +1 (BĐT Cô si) m +1 ⇒ IM ≥ GTNN IM Câu 194 Đáp án B (( Xét hàm f sin x + cos x (( )) )) t Đặt sin x + cos x = ⇒ hàm cần xét f ( t ) Tìm điều kiện ẩn t t= ( (sin ) x + cos x ) = ( sin x + cos x ) − 2sin x cos x = 1 − 2sin x cos x = − 4sin x cos x = − sin 2 x Ta có: sin 2 x ∈ [ 0;1] ⇒ − sin 2 x ∈ [1; 2] ⇒ t ∈ [1; 2] Xét hàm f ( t ) với t ∈ [1; 2] f ( t ) 3= t max= Dựa vào đồ thị ta có: f ( t ) 1= t min= ⇒ M + m = +1 = 33 Câu 195 Đáp án B Nhận xét: ⇒ ( ( ) ( x2 ) ( 10 + ) x2 10 + 10 − ) 10 − x2 6.3 − x2 Phương trình: m = m ( ( x2 ) ( 10 + ( ( ) 10 + ) 10 − x2 x2 x2 10 + Đặt 10 − x x2 10 + − 10 − 10 + 10 + m − 10 − 10 − x2 2 ) ) = 9x = 3x 10 − 10 − x2 x2 x2 x2 = t Điều kiện: ≥ ⇒ t ≥1 ⇒ Ta có phương trình m= 6t − t 6t − t , t ≥ Xét f ( t ) = −∞ t f (t ) +∞ m −∞ −∞ Để phương trình có nghiệm x m = ⇒ 15 giá trị ⇔ phương trình có nghiệm t > ⇔ m < 10 + Chú ý: t > ⇒ 10 − 10 + ⇒ t= 10 − x2 x2 > ⇒ có nghiệm x = ⇒ có nghiệm x = Câu 196 : 34 Đáp án A Xét g ( x ) =x − x3 + x + a g ' ( x ) = x3 − 12 x + x = ⇔ x = 0,1, x −∞ g '( x) g ( x) +∞ − + +∞ − 1+ a a + +∞ a Xét f ( x ) = g ( x ) TH1: Đồ thị g ( x ) nằm hoàn tồn phía trục Ox ⇔a≥0 Khi đồ thị f ( x ) giống đồ thị g ( x ) max f ( x ) = f (1) =1 + a =M [0;2] f ( x )= f ( )= f ( )= a= m min [0;2] Theo đề M ≤ 2m ⇔ + a ≤ 2a ⇔ a ≥ Kết hợp với điều kiện ⇒ a ≥ TH2: Đồ thị f ( x ) nằm hoàn toàn trục hoành + a ≤ ⇔ a ≤ −1 Khi đồ thị f ( x ) đối xứng, xét đồ thị g ( x ) qua trục hoành M = −a ⇒ m =−a − ĐK: M ≤ 2m ⇔ −a ≤ −2a − ⇔ a ≤ −2 Kết hợp với điều kiện ⇒ a ≤ −2 TH3: xảy ⇔ a + (1 + a ) ≥ ⇔ 2a + ≥ ⇔ a ≥ − 2 M = + a Khi m = ĐK: M ≤ 2m ⇔ + a ≤ ⇔ a ≤ −1 35 Kết hợp với điều kiện ⇒ loại TH4: xảy ⇔ a + (1 + a ) ≤ ⇔⇔ a ≤ − 2 M = −a Khi m = ĐK: M ≤ 2m ⇔ −a ≤ ⇔a≥0 Kết hợp với điều kiện ⇒ loại Từ trường hợp a ≥ a ≤ −2 ⇒ a =−4, − 3, − 1,1, 2,3, Có giá trị thỏa mãn Câu 197 Đáp án A Với y = log 2018 x ta có = y' > ⇒ hàm số đồng biến ln 2018 π π π Với y = ta= có y ' ln > ⇒ hàm số đồng biến e e e x x x 5 Với y log = = y' < ⇒ hàm số nghịch biến ta có = x, y x ln x 5 Với y = ta có y ' = x 5 < ⇒ hàm số nghịch biến ln Câu 198: Đáp án B Ta có y ' = −2x nên hàm số đồng biến khoảng ( −∞;0 ) Câu 199 Số đường tiệm cận (đứng ngang) đồ thị hàm số y = A B C x2 D Đáp án B Đồ thị hàm số có tiệm cận đứng x = 0, tiệm cận ngang y = Câu 200 Đáp án A Đồ thị hàm số có tiệm cận đứng x = −1, tiệm cận ngang y = −2, qua điểm ( 0;1) nên hàm số y= − 2x thỏa mãn x +1 36 ... đúng? A Hàm số đạt cực đại x = B Hàm số đạt cực đại x = −2 C Hàm số đạt cực đại x = D Hàm số đạt cực đại x = x+4 −2 x > x Câu 160: Cho hàm số f ( x ) = , m tham số Tìm giá trị m để hàm số có... = Câu 139: Cho hàm số y = x + C x = 1; y = −2 D = x 1;= y − Mệnh đề sau sai? x A Hàm số có giá trị cực tiểu B Hàm số đạt cực đại x = C Giá trị cực đại hàm số -4 D Hàm số có hai điểmcực trị Câu. .. x > Câu 144: Cho hàm số f ( x ) = x − Xác định a để hàm số liên tục điểm x = −2a x + x ≤ A a = B a = C a = D a = −1 Câu 145: Đường cong hình bên đồ thị bốn hàm số Hàm số hàm số nào?