Tài liệu tham khảo |
Loại |
Chi tiết |
[1] P. Andrzej (1999), "On a funtional - differential equation (in a historical context)", Opuscula Math. , 19, pp. 45-61 |
Sách, tạp chí |
Tiêu đề: |
On a funtional - differential equation (in a historicalcontext) |
Tác giả: |
P. Andrzej |
Năm: |
1999 |
|
[3] S. Benat (2010), "On the smooth parameter-dependence of the solutions of abstract functional differential equations with state-dependent delay", Funct. Differ. Equa. , 17, pp. 253-293 |
Sách, tạp chí |
Tiêu đề: |
On the smooth parameter-dependence of the solutionsof abstract functional differential equations with state-dependent delay |
Tác giả: |
S. Benat |
Năm: |
2010 |
|
[4] Coddington, Earl A., Levinson, Norman (1955), Theory of Ordinary Dif- ferential Equations , New York: McGraw-Hill |
Sách, tạp chí |
Tiêu đề: |
Theory of Ordinary Dif-"ferential Equations |
Tác giả: |
Coddington, Earl A., Levinson, Norman |
Năm: |
1955 |
|
[5] A. Domoshnitsky, A. Drakhlin, E. Litsyn (2002), "On equations with delay depending on solution", Nonlinear Anal. , 49, pp. 489-701 |
Sách, tạp chí |
Tiêu đề: |
On equations withdelay depending on solution |
Tác giả: |
A. Domoshnitsky, A. Drakhlin, E. Litsyn |
Năm: |
2002 |
|
[6] A. Domoshnitsky, A. Drakhlin, E. Litsyn (2006), "Nonocillation and positivity of solutions to first order state-dependent differential equa- tions with impulses in variable moments", J. Differential Equations , 288, No. 1, pp. 39-48 |
Sách, tạp chí |
Tiêu đề: |
Nonocillation andpositivity of solutions to first order state-dependent differential equa-tions with impulses in variable moments |
Tác giả: |
A. Domoshnitsky, A. Drakhlin, E. Litsyn |
Năm: |
2006 |
|
[7] E. Eder (1984), "The functional-differential equation x 0 (t ) = x(x(t )) ", J.Differential Equations , 54, pp. 390–400 |
Sách, tạp chí |
Tiêu đề: |
The functional-differential equation x0(t) =x(x(t)) |
Tác giả: |
E. Eder |
Năm: |
1984 |
|
[8] A. Elbert (1992), "Asymptotic behaviour of the analytic solution of the differential equation y 0 (t) + y(qt) = 0 as q → 1 − ", J. Comput. Appl. Math. , 41, pp. 5-22 |
Sách, tạp chí |
Tiêu đề: |
Asymptotic behaviour of the analytic solution of thedifferential equation y0(t) +y(qt) =0 as q→1− |
Tác giả: |
A. Elbert |
Năm: |
1992 |
|
[9] F. Hartung (2005), "Linearized stability in periodic functional differen- tial equations with state-dependent delays", J. Comput. Anal. Math. , 174, No. 2, pp. 201-211 |
Sách, tạp chí |
Tiêu đề: |
Linearized stability in periodic functional differen-tial equations with state-dependent delays |
Tác giả: |
F. Hartung |
Năm: |
2005 |
|
[10] W. T. Li, S. Zhang (2002), "Classification and existence of positive solu- tions of higer order nonlinear iterative functional differential equations", J. Comput. Appl. Math. , 139, pp. 351-367 |
Sách, tạp chí |
Tiêu đề: |
Classification and existence of positive solu-tions of higer order nonlinear iterative functional differential equations |
Tác giả: |
W. T. Li, S. Zhang |
Năm: |
2002 |
|
[11] U. V. Le and E. Pascali (2008), "An existence theorem for self-referred and hereditary differential equations", Adv. Differential Equations Control Process. , 1, pp. 25–32 |
Sách, tạp chí |
Tiêu đề: |
An existence theorem for self-referredand hereditary differential equations |
Tác giả: |
U. V. Le and E. Pascali |
Năm: |
2008 |
|
[12] U. V. Le, L. T. T. Nguyen (2008), "Existence of solutions for systems of self-referred and hereditary differential equations", Electron. J. Diff.Eqns. , 51, pp. 1-7 |
Sách, tạp chí |
Tiêu đề: |
Existence of solutions for systemsof self-referred and hereditary differential equations |
Tác giả: |
U. V. Le, L. T. T. Nguyen |
Năm: |
2008 |
|
[13] M. Miranda, E. Pascali (2005), "On a class of differential equations with self-reference", Rendiconti di Matematica , serie VII, 25, pp. 155-164 |
Sách, tạp chí |
Tiêu đề: |
On a class of differential equations withself-reference |
Tác giả: |
M. Miranda, E. Pascali |
Năm: |
2005 |
|
[14] M. Miranda, E. Pascali (2006), "On a type of evolution of self-referred and hereditary phenomena", Aequationes Math. , 71, pp. 253-268 |
Sách, tạp chí |
Tiêu đề: |
On a type of evolution of self-referredand hereditary phenomena |
Tác giả: |
M. Miranda, E. Pascali |
Năm: |
2006 |
|
[15] M. Miranda, E. Pascali (2006), "Other classes of self-referred equa- tions", Università di Lecce , C.P. 193, 73100 Lecce, Italy, pp. 1-12 |
Sách, tạp chí |
Tiêu đề: |
Other classes of self-referred equa-tions |
Tác giả: |
M. Miranda, E. Pascali |
Năm: |
2006 |
|
[16] E. Pascali (2006), "Existence of solutions to a self-referred and heredi- tary system of differential equations", Electron. J. Diff. Eqns. , Vol. 2006, No. 07, pp. 1–7 |
Sách, tạp chí |
Tiêu đề: |
Existence of solutions to a self-referred and heredi-tary system of differential equations |
Tác giả: |
E. Pascali |
Năm: |
2006 |
|
[18] J. G. Si and S. S. Cheng (1997), "Analytic solutions of a functional- differential equation with state dependent argument", Taiwanese J. Math. , 4, pp. 471–480 |
Sách, tạp chí |
Tiêu đề: |
Analytic solutions of a functional-differential equation with state dependent argument |
Tác giả: |
J. G. Si and S. S. Cheng |
Năm: |
1997 |
|
[19] S. Stanek (1995), "On global properties of solutions of functional differ- ential equation u 0 (t ) = u (u(t)) + u(t ) ", Dynamical Systems and Appl. , 4, pp.263–278 |
Sách, tạp chí |
Tiêu đề: |
On global properties of solutions of functional differ-ential equation u0(t) =u(u(t)) +u(t) |
Tác giả: |
S. Stanek |
Năm: |
1995 |
|
[20] S. Stanek (1997), "Global properties of decreasing solutions of the equa- tion u 0 (t ) = u (u(t)) + u(t) ", Funct. Differ. Equ. , 4, pp. 191–213 |
Sách, tạp chí |
Tiêu đề: |
Global properties of decreasing solutions of the equa-tion u0(t) =u(u(t)) +u(t) |
Tác giả: |
S. Stanek |
Năm: |
1997 |
|
[21] S. Stanek (1998), "Global properties of solutions of iterative-differential equations", Funct. Differ. Equ. , 5, pp. 463–481 |
Sách, tạp chí |
Tiêu đề: |
Global properties of solutions of iterative-differentialequations |
Tác giả: |
S. Stanek |
Năm: |
1998 |
|
[22] S. Stanek (2000), "Global properties of increasing solutions for the equa- tion u 0 (t ) = u (u(t)) − bu(t ), b ∈ (0, 1) ", Soochow J. Math. , 26, pp. 37–65 |
Sách, tạp chí |
Tiêu đề: |
Global properties of increasing solutions for the equa-tion u0(t) =u(u(t))−bu(t),b∈(0,1) |
Tác giả: |
S. Stanek |
Năm: |
2000 |
|