PHÒNG GIÁO DỤC ĐÀO TẠO HUYỆN XUYÊN MỘC KỲ THI CHỌN HỌC SINH GIỎI VĂN HÓA CẤP HUYỆN NĂM HỌC 2016 - 2017 Mơn: Tốn Thời gian làm bài: 150 phút (khơng kể thời gian giao đề) Khóa thi, ngày 10 tháng 01 năm 2017 ĐỀ CHÍNH THỨC Bài 1:(3,0 điểm) 1) Chứng minh số A 62015 1 B 62016 1 bội 2) So sánh A 102016 102016 B 102017 11 102017 Bài 2: (5,5 điểm) 1) Rút gọn biểu thức: P x 9 x 1 x 3 với x 0;x 4;x x 5 x 6 x 3 2 x 2) T m giá tr lớn nh t biểu thức: Q 2016 x x 2016 x2 3) T m nghiệm nguyên dương phương tr nh: 6x2 + 5y2 = 74 Bài 3: (3,5 điểm) 1) Trên mặt phẳng Oxy, cho đường thẳng (d) có phương tr nh m 4 x m 3 y (m tham số) T m m để khoảng cách từ gốc tọa độ đến đường thẳng (d) lớn nh t 2) Cho số dương a, b, c Chứng minh : a b c 2 ab bc ca Bài 4:(5,5 điểm) Cho nửa đường tròn (O), đường kính AB = 2R L y điểm M b t kỳ nửa đường tròn (M khác A B); tiếp tuyến A M nửa đường tròn (O) cắt K Gọi E giao điểm AM OK 1) Chứng minh OE.OK khơng đổi M di chuyển nửa đường tròn 2) Qua O kẻ đường vng góc với AB cắt BK I cắt đường thẳng BM N Chứng minh: IN = IO 3) Vẽ MH vng góc với AB H Gọi F giao điểm BK MH Chứng minh: EF//AB Bài 5:(2,5 điểm) Cho tam giác ABC nội tiếp đường tròn (O; R) Một điểm P chạy cung nhỏ AB (P khác A B) Chứng minh tổng khoảng cách từ P đến A từ P đến B không lớn đường kính đường tròn (O) - HẾT Họ tên thí sinh: …………………………… Số báo danh: ………………………………… Chữ ký giám th số 1: ……………… UBND HUYỆN XUYÊN MỘC PHÒNG GD&ĐT XUYÊN MỘC HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2016 – 2017 MƠN THI TỐN LỚP (Hướng dẫn chấm có ……… trang) Bài 1:(3,0 điểm) 1) Chứng minh số A 62015 1 B 62016 1 bội 2) So sánh A Bài 102016 102017 11 Ta có: A 2015 B 1 1 7 B 62016 1 62 1013 1.1 (1,0đ) Ta có: 10 A 1.2 (2,0đ) 102016 102017 Đáp án 10.(102016 1) 102017 11 1 2017 2017 2017 10 11 10 11 10 11 10.(102016 1) 102017 1 2017 2017 2017 10 10 10 Ta th y 10 0,5 62 1 35 Và: 10 B 2017 Điểm 0,5 11 10 2017 9 (*) (**) nên từ (*) (**) 10A > 10B A > B 0,75 0,5 0,75 ( Trong ý đầu, ý chứng minh trước cho 0,75; ý sau tương tự cho 0,5đ) Bài 2: (5,5 điểm) 1) Rút gọn biểu thức: P x 9 x 1 x 3 với x 0;x 4;x x 5 x 6 x 3 2 x 2) T m giá tr lớn nh t biểu thức: 2016 x x 2016 Q x2 3) T m nghiệm nguyên dương phương tr nh: 6x2 + 5y2 = 74 Bài 2.1 (2,0đ) Đáp án x (2 x 1)( x 2) ( x 3)( x 3) P ( x 2)( x 3) P x x 2 ( x 2)( x 1) x 1 ( x 2)( x 3) ( x 2)( x 3) x 3 Điểm 0,75 0,5x2 +0,25 a) Ta có: 2016 x x 2016 (2017 x 2017) ( x x 1) x2 x2 2017( x 1) ( x 1) ( x 1) 2017 (*) x2 x2 x2 ( x 1) nên từ (*) Q 2017 Vì x 1 Q 2.2 (2,0đ) D u “=” xảy ( x 1)2 x 1 x x2 0,5 0,5 0,25 0,5 Vậy max Q = 2017 x Cách 1: Ta có : 6x2 + 5y2 = 74 6x2 – 24 = 50 – 5y2 2 6(x – 4) = 5(10 – y ) (*) Từ (*) suy ra: 6(x2 – 4) Mà (6;5) = nên (x2 – 4) Đặt x2 – = 5t ( t ) x2 = 5t + Thay vào (*) y2 = 10 – 6t 2.3 (1,5đ) t x x t Vì t y y 10 6t t t t = Khi t = y = 10 (loại v y ) x2 x (vì x > 0; y > 0) Khi t = y y 0,25 0,25 0,25 0,25 0,25 0,5 Cách 2: Ta có : 6x2 + 5y2 = 74 6x2 – 24 = 50 – 5y2 6(x2 – 4) = 5(10 – y2) (*) Từ (*) suy ra: 6(x2 – 4) Mà (6;5) = nên (x2 – 4) 2 [(x – 4) +5] (x +1) (**) Từ < 6x2 < 74 < x2 12 Kết hợp (**) x2 = x2 = 2 Khi x = y = 10 (loại v y ) 2 Khi x = y = (x = y = 2) (vì x > 0; y > 0) 0,25 0,25 0,25 0,25 0,25 0,25 Bài 3: (3,5 điểm) 1) Trên mặt phẳng Oxy, cho đường thẳng (d) có phương tr nh m 4 x m 3 y (m tham số) T m m để khoảng cách từ gốc tọa độ đến đường thẳng (d) lớn nh t 2) Cho số dương a, b, c Chứng minh : Bài a b c 2 ab bc ca Đáp án Xét pt: m x m 3 y Điểm Ta th y: m 4 m 3 nên (d) qua O(0;0) 0,25 + m = ta y = nên K/c từ (d) đến O y 0,25x2 + m = ta x = - nên K/c từ (d) đến O x 1 1 ,0 cắt Oy B 0, m3 m4 + m 3;m th (d) cắt Ox A 3.1 (2,0đ) Kẻ OH vng góc với (d) H; ta có K/c từ O đến (d) OH Dựa vào ΔOAB vuông O 7 1 2 ( m 4) ( m 3) m OH 2 2 Suy được: OH Suy khoảng cách từ O đến (d) lớn nh t OH = m = 0,25 0,5 0,25 0,25 V a, b, c số dương (gt) nên ta có: a a ac abc ab abc (1) 0,5 3.2 (1,5đ) b b ba abc bc bca (2) c c cb a bc ca ca b (3) 0,25 0,25 Cộng vế (1), (2) (3), ta có: a b c 2 ab bc ca 0,5 Lưu ý: HS chứng minh vế cho 0,75đ Bài 4:(5,5 điểm) Cho nửa đường tròn (O), đường kính AB = 2R L y điểm M b t kỳ nửa đường tròn (M khác A B); tiếp tuyến A M nửa đường tròn (O) cắt K Gọi E giao điểm AM OK 1) Chứng minh OE.OK không đổi M di chuyển nửa đường tròn 2) Qua O kẻ đường vng góc với AB cắt BK I cắt đường thẳng BM N Chứng minh: IN = IO 3) Vẽ MH vng góc với AB H Gọi F giao điểm BK MH Chứng minh: EF//AB N K M I E A F O H B Đáp án Bài Điểm 0,25 H nh vẽ đến câu 4.1 (1,75đ) Chứng minh OK AM E Dựa vào OAK vuông A OE.OK = OA2 = R2 không đổi 4.2 Chứng minh được: OK // BN ( AM) Chứng minh được: AOK = OBN (g.c.g) OK = BN (1,75đ) Suy OBNK h nh b nh hành từ suy được: IN = IO 0,75 0,75 0,25x2 0,5 + 0,25 0,5 Chứng minh AOK đồng dạng HBM HB MB HB MB (1) AO OK AO OK Chỉ MB = HB.AB OA = OE.OK (cma) (2) 0,5 0,25 Từ (1) (2) suy HB HB AB HB AB HB OE OK OE OK OE OK AB OK 0,5 4.3 (2,0đ) (3) HB FB 0,25 (4) AB BK 0,5 FB OE Từ (3) (4) suy EF // OB //AB (đl Ta let) KB OK Bài 5:(2,5 điểm) Cho tam giác ABC nội tiếp đường tròn (O; R) Một điểm P chạy cung Chứng minh nhỏ AB (P khác A B) Chứng minh tổng khoảng cách từ P đến A từ P đến B khơng lớn đường kính đường tròn (O) A 13 P B Bài O Q C Đáp án Vì ABC đều, P AB nên AP < PC L y điểm Q PC cho PQ = PA APQ cân có APQ P1 600 (chắn cung 120 ) nên APQ Điểm 0,25 (2,5đ) AP = AQ = PQ 0,75 - Chứng minh APB = AQC (c.g.c) PB = QC Từ PA + PB = PQ + QC = PC Mà PC dây (O) 1,0 nên PC 2R (đường kính) Chứng tỏ tổng khoảng cách từ P đến A từ P đến B không lớn 0,5 đường kính đường tròn (O) (đpcm) Chú ý: Nếu thí sinh làm cách khác GK cho điểm tương đương Điểm tồn khơng làm tròn ... 1 2017 2017 2017 10 11 10 11 10 11 10.(1 02016 1) 1 02017 1 2017 2017 2017 10 10 10 Ta th y 10 0,5 62 1 35 Và: 10 B 2017 Điểm 0,5 11 10 2017 9 (*) (**)... 62016 1 bội 2) So sánh A Bài 1 02016 1 02017 11 Ta có: A 2015 B 1 1 7 B 62016 1 62 1013 1.1 (1,0đ) Ta có: 10 A 1.2 (2,0đ) 1 02016 1 02017 Đáp án 10.(1 02016 1) 1 02017. ..UBND HUYỆN XUYÊN MỘC PHÒNG GD&ĐT XUYÊN MỘC HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2016 – 2017 MƠN THI TỐN LỚP (Hướng dẫn chấm có ……… trang)