1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phát triển đề minh họa 2019 đề 3

13 157 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 445,5 KB

Nội dung

Câu 1. The tích cna khoi h®p chu nh¾t có canh đáy bang a, canh bên bang 2a là 2a3. a3. 4a3. 8a3. Câu 2. Cho hàm so y = f (x) có bang bien thiên như sau x −∞ 0 2 +∞ yJ − 0 + 0 y +∞ 1 5 −∞ Giá tr% cnc tieu cna hàm so đã cho bang 1. 5. 0. 2. Câu 3. Trong không gian Oxyz, cho hai điem A(1; 2; 3), B(−1; 0; 1). Véctơ −A→B có toa đ® là (2; 2; 2). Câu 4. (−2; −2; −2). (0; 2; 4). (−2; 2; −2). Cho hàm so y = f (x) có đo th% như hình ve bên. Hàm so đã cho ngh%ch bien trên khoang nào dưói đây? A (1; +∞). B (−∞; −1). C (−1; 1). D (−1; 0). y −1 1 x

CHIA GIÂy SE C®NG ĐONG - đÁP ÁN NHĨM LATEX PHÁT TRIEN ĐE MINH HOA THPT QUOC GIA 2019 Đe thi thN THPT Quoc Gia 2019 Mơn Tốn 12 Thòi gian làm 90 phút SBD: Mã đe thi: 103 Câu The tích cna khoi hđp chu nhắt cú canh ỏy bang a, canh bờn bang 2a D 8a3 C 4a3 B a3 A 2a Câu Cho hàm so y = f (x) có bang bien thiên sau x −∞ y − yJ +∞ +∞ + +∞ −∞ −∞ Giá tr% cnc tieu cna hàm so cho bang A B C D − → Câu Trong không gian Oxyz, cho hai điem A(1; 2; 3), B(−1; 0; 1) Véc-tơ A B có toa đ® D (−2; 2; −2) A (2; 2; C (0; 2; B (−2; −2; 2) 4) −2) Câu y Cho hàm so y = f (x) có đo th% hình ve bên Hàm so cho ngh%ch bien khoang dưói đây? A (1; +∞) B (−∞; −1 −1) x O C (−1; 1) D (−1; 0) −1 −2 Câu Vói a b hai so thnc dương tùy ý, ln(a2b3) bang A 2ln a + ln b B 3ln a + ln b ∫1 Câu Cho A −2 ∫1 f (x) dx = C ln a − ln b D 1 ln a + ln b ∫1 g(x) dx = 8, [f (x) − 3g(x)] dx bang B 27 Câu The3 tích khoi cau đưòng kính 2a bang 4πa A B C 24 πa3 D 4πa3 Trang 1/7 – Mã đe thi: 103 CHIA GIÂy SE C®NG ĐONG - đÁP ÁN C 2 Câu Tìm t¾p xác đ%nh D cna hàm so y = log x + log3 (2x) A D = [0; D = (0; C D= B +∞) +∞) R D NHÓM A 2πa3L TEX D D = R \ {0} Trang 2/7 – Mã đe thi: 103 Câu Trong khơng gian Oxyz, m¾t phang (Oxy) có phương trình D x = x+y+z= y= A z= C B √ Câu 10∫ Tìm HQ nguyên hàm cna hàm so f (x) = x +∫1, (x > −1) 4 f (x) dx = (x + 1) f (x) dx = (x + 1) A B + C + C 2 ∫ ∫ + 1) + + 1) + C f (x) dx = − C f (x) dx = − D C 3 (x (x x − 10 Câu 11 Trong khơng gian Oxyz, tính khoang cách d tù điem A(1; 2; 3) đen đưòng thang ∆: = − y−2 z+2 = 13 A d= C d= B d= D d = 1358 2 1361 27 Câu 12 Cho t¾p hop gom n phan tu So chinh hop ch¾p k cna n phan tu k k k Ck A A n D nC C nA B n n n Câu 13 Cho m®t cap so c®ng (un) có u1 = , u8 = 26 Tìm cơng sai d 11 10 3 D d= A d= C d= B d= 3 10 11 Câu 14 Cho điem M điem bieu dien cna so phúc z Tìm phan thnc phan ao cna so phúc z A B C D y M Phan thnc −4 phan ao 3i Phan thnc phan ao −4 Phan thnc −4 phan ao Phan thnc phan ao −4i −4 Câu 15 Đo th% hình bên đo th% cna hàm so dưói đây? 3− A B y x= Câu 16 x+1 2x= − C y 1−x O x y x −1 O −2 − 2x y= x − 2x y= x+1 − D y −3 3x 1− O22 Cho hàm so y = f (x) liên tuc đoan [−1; 3] có đo th% hình ve bên GQI M m lan lưot giá tr% lón nhat nho nhat cna hàm so cho đoan [−1; 3] Giá tr% cna M − m2 bang B 13 A D C Câu 17 Cho hàm so f (x) có đao hàm f J (x) = x3 (x − 1)4 (x + 2)5 , ∀x ∈ R So điem cnc tr% cna hàm so cho D A C B Câu 18 Tìm so phúc w = 3z + z¯ biet z = + 2i D w = + 4i w=4− w=2− A w=4+ 4i 4i 4i B C Câu 19 Trong khơng gian vói hắ truc TQA đ Oxyz, cho hai iem M (6; 2; −5), N (−4; 0; 7) Viet phương trình m¾t cau đưòng kính M N A (x − 5)2 + (y − 1)2 + (z + 6)2 C = 62 (x − 1)2 + (y − 1)2 + (z − 1)2 = 62 B (x + 1)2 + (y + 1)2 + (z + 1)2 = 62 D (x + 5)2 + (y + 1)2 + (z − 6)2 = 62 Câu 20 Cho loga x = −1 loga y = Tính P = loga (x2y3) A P= C P= B P= 10 −14 D P = 65 Câu 21 GQI z1 z2 hai nghi¾m phúc cna phương trình z + 2z + 10 = Tính giá tr% cna bieu thúc A = |z1 |2 + |z2 |2 D A = 25 A A= C A= B A= 10 15 20 Câu 22 Trong khơng gian Oxyz, cho m¾t phang (α): x − 2y − 2z + = m¾t phang (β): x − 2y − 2z + = Khoang cách tù điem m¾t phang (β) đen m¾t phang (α) bang √ 2 25 A D B C Σ4x −15x+13 Σ4−3x 1 T¾p nghi¾m cna bat phương trình Câu 23 Cho bat phương < 2 trình Σ Σ ; +∞ R R \ D ∅ A C B 2 Câu 24 y GQI S di¾n tích cna hình phang (H) giói han boi đo th% hàm so y = f (x), truc hoành Ox hai đưòng thang x = −1, x = 2(như hình ∫0 ∫2 − 2x ve bên) Đ¾t a = f (x) dx, b f (x) dx, m¾nh đe sau −1 = đúng? S = b − a A S = b + a C S = −b + B S = −b − a D a √ Câu 25 Cho khoi nón có bán kính đáy r = chieu cao h = The tích cna khoi nón cho bang A V= 12π B V= 4π C V= D V = 12 Câu 26 Cho hàm so y = f (x) có bang bien thiên x −∞ − 02 + yJ +∞ + − 03 − y −∞ − −∞ Hoi đo th% hàm so có đưòng ti¾m c¾n? A B 2 −1 C D √ Câu 27 Cho khoi chóp tú giác đeu S.ABCD có canh đáy bang a canh bên bang a Tính the tích V cna√khoi chóp theo a √ √ a3 a3 a3 10 a3 D A C B 6 Câu 28 Hàm so f (x) = log3 (x2 + x) có đao hàm J (2x + 1) ln A f (x) = B f J (x) = x +x (x + x) ln 2x +1 ln J J D f (x) = C f (x) = (x + x) x +x ln Câu 29 Cho hàm so f (x) có bang bien thiên x −∞ f (x) +∞ +∞ f (x) − − J + +∞ − 2 + +∞ +∞ − − 3 So nghi¾m cna phương trình 2f (x) − = A C B − − 3 D Câu 30 Cho hình chóp S.ABCD có đáy hình thoi tâm O, SO ⊥ (ABCD) Góc giua đưòng thang SA m¾t phang (SBD) ÷AC ÷SB A A÷SO B D A C S Câu 31 Phương trình log2 x − log2 x + = có hai nghi¾m x1, x2 Khi tích x1 · x2 ÷ S AO bang D C A 32 64 B 36 16 Cõu 32 Mđt vắt (N1) cú dang hỡnh nún có chieu cao bang 40 cm Ngưòi ta cat v¾t (N1) bang mđt mắt phang song song vúi ỏy cna h đe đưoc m®t hình nón nho (N2) có the tích bang Tính chieu cao h cna hình nón (N2) B C D the tích (N1) A 10 cm 20 cm 40 cm 40 cm ∫ Câu 33 Tìm HQ nguyên hàm F (x) = F (x) = (x2 − 3)ex + A C F (x) = (x2 + 3x − C 4)ex + C (x2 − x + 1)ex dx x B F (x) = (x + x + 4)e D + C Fx (x) = (x − 3x + 4)e + C Câu 34 Cho hình chóp S.ABC có đáy ABC tam giác đeu canh a, tam giác SAC cân tai S nam m¾t phang vng góc √vói đáy, S÷BC = 60◦ Kh√oang cách tù A đen √ a a a (SBC D A √a) bang C B x y+ z−3 Câu 35 Trong khơng gian vói hắ TQA đ Oxyz, cho ũng thang d : = −1 = −1 Phương trình dưói phương trình hình chieu vng góc cna đưòng thang d m¾t phang x + 3 = 0?    x = −3 x = −3 x = −3 x = −3     y = −5 − t y = −5 + y = −5 + y = −6 − t A D B C   t 2t  z = + 4t      z=3+ z = −3 z=3− + 4t t 4t Câu 36 Cho hình chóp S.ABC có đáy tam giác vng tai A, AC = 2a, ÷ ABC = 30◦, SA vng góc vói m¾t phang đáy đưòng thang SC tao vúi mắt phang ỏy mđt gúc 60 Khoang cách tù TRQNG tâm cna tam giác SAC đen m¾t phang (SBC) bang √ 3a a 2a √ 3a √ √ A B C D 15 15 3 Câu 37 Trong khơng gian vói hắ TQa đ Oxyz, cho hai ũng thang d1 , d2 lan lưot có phương trình x y−1 z−1 x y+1 = = Đưòng thang d cat ca hai đưòng thang d , song song z = = d 1 1 −2 x−4 y−7 z−3 vói đưòng thang ∆: = = có phương trình − x+ y− x− y− z−4 z+4 A 1 = = = = B −2 −2 x+1 y+1 z+4 x−1 y+1 z− = = D C = = −2 −2 Σ m −Σi Σ Σ Câu 38 GQI M giá tr% lón nhat cna − , vói m so thnc M¾nh đe dưói đúng? ;5 5; ;1 D A C B 01 M M M M 2 ; 2 ∈ ∈ ∈ ∈ 5 5 Câu 39 Cho hình nón có chieu cao bang bán kính đáy bang Cat hình nón cho boi m¾t phang q√ua đinh cách tâm cna√đáy m®t khoang bang 4, ta đưoc thiet di¾n có di¾n tích bang 16 32 11 11 √ A D √ B C 65 65 3 Câu 40 Cho đa giác đeu 4n đinh (n 2) CHQN ngau nhiên bon đinh tù đinh cna đa giác ≥ cho Biet rang xác suat đe bon đinh đưoc cHQN m®t hình vng bang Khi n bang 913 B C D A 12 10 16 20 y z−3 = = m¾t cau (S): x2 + y2 + 1 z = Hai m¾t phang phân bi¾t qua d, tiep xúc (S) tai A, B Đưòng thang AB qua điem có TQA đ® Σ Σ Σ Σ 4 4 ; − ; −1 B − ;− ;2 C ; − ; −2 D − ; − ; A 3 3 3 3 Câu 42 GQI a so nguyên dương nho nhat cho ton tai so nguyên b, c đe phương trình √ 8a log2 x + b log x2 + 3c = cú hai nghiắm phõn biắt eu thuđc (1; 10) Giỏ tr% cna a bang D 12 A C B Câu 41 Trong khơng gian Oxyz cho đưòng thang d : x−3 Câu 43 Cho hàm so f (x) liên tuc R thoa mãn f (x) + 3f π ∫ R) .π Σ − x = (x − 1) cos x, (∀x ∈ f (x) dx bang Tích phân A π−4 π−4 C B 4−π D Câu 44 Cho so phúc z = a + bi vói a, b ∈ R thoa mãn |z − + 3i| − |z + + 3i| = 10 Khi bieu thúc |z − − 4i| đat giá tr% nho nhat, giá tr% a − b bang D −8 C −6 B −7 A −5 Câu 45 Có giá tr% nguyên cna m đe phương trình |x4 − 7x2 − 8x + 23 − 2m| = |x4 − 9x2 + 8x − có nghi¾m phân bi¾t? D C 17 B 15 A Câu 46 Cho hàm so f (x) = ax5 + bx4 + cx3 + dx2 + ex + f (a, b, c, d, e, f ∈ R) Biet rang hàm so y = f J (x) có đo th% hình ve bên Hoi hàm so g(x) = f (−3x − 8) + x2 + 16x + 2019 đong bien khoang dưói đây? y 64 2O 6x −− − 4Σ −2; − B Σ 14 10 C (4; 6) D − ;− 3 Câu 47 Cho hình chóp S.ABCD có đáy ABCD hình thang Biet rang AB CD, √ AB > CD, AB = 2a, ACB = 90◦ Các tam giác SAC, SBD tam giác đeu canh ǁbang a Tính (−3; A −2) theo a the √tích k S.ABCD 3a√ A ÷ hoi chóp B a √ Câu 48 Cho hàm so y = f (x) có đo th% đoan [−2; 6] hình ve bên Biet mien A, B, C có di¾n tích lan lưot 32, Tích −2 phân ∫2 π Σ ΣΣ π 4x − I = x + 2x + dx − (8 − 88 cos 6x)f bang A √ C a D a y B O −2 B C 11 91 D − 12 A x C Câu 49 Cho hàm so y = f (x) có đo th% hình ve bên bên Có so nguyên dương cna tham so m đe hàm so g(x) = |f (x + 2018) + m| có điem cnc tr% ? D C A B y x O −3 −6 Câu 50 Trong không gian Oxyz, cho hai m¾t phang (P ) : 2x − y − 2z + = 0, (Q) : (m + 2)x + y + mz − = (m tham so thnc) Khi hai m¾t phang (P ) (Q) tao vói m®t góc nho nhat điem A dưói nam m¾t phang (Q)? A(−1, 2, 1) A(3, 1, A(1, 1, A A(1, 1, −2) D B 1) C 2) ... cm 40 cm ∫ Câu 33 Tìm HQ nguyên hàm F (x) = F (x) = (x2 − 3) ex + A C F (x) = (x2 + 3x − C 4)ex + C (x2 − x + 1)ex dx x B F (x) = (x + x + 4)e D + C Fx (x) = (x − 3x + 4)e + C Câu 34 Cho hình chóp... z 3 Câu 35 Trong khụng gian vúi hắ TQA đ Oxyz, cho ũng thang d : = −1 = −1 Phương trình dưói phương trình hình chieu vng góc cna đưòng thang d m¾t phang x + 3 = 0?    x = 3 x = 3 x = 3. .. C f (x) dx = − D C 3 (x (x x − 10 Câu 11 Trong khơng gian Oxyz, tính khoang cách d tù điem A(1; 2; 3) đen đưòng thang ∆: = − y−2 z+2 = 13 A d= C d= B d= D d = 135 8 2 136 1 27 Câu 12 Cho t¾p

Ngày đăng: 12/09/2019, 00:13

w