1. Trang chủ
  2. » Trung học cơ sở - phổ thông

011 đề HSG toán 8 hưng yên 2013 2014

5 650 11

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 264,5 KB

Nội dung

ĐỀ THI CHỌN HỌC SINH GIỎI TỈNH HƯNG YÊN Năm học: 2013-2014 Mơn: TỐN Bài (2,0 đ) Giải phương trình sau: x  214 x  132 x  54 a)   6 86 84 82 1 1 b)    x  x  20 x  11x  30 x  13x  42 18 Bài (2,0 đ) a) Cho a, b, c cạnh tam giác a b c Chứng minh : A    3 bc a a c b a bc a b c x y z b) Cho       x y z a b c x y2 z2 Chứng minh rằng:    a b c Bài (1,0 đ) Giải toán cách lập phương trình Một phân số có tử số bé mẫu số 11 Nếu bớt tử số đơn vị tăng mẫu lên đơn vị phân số nghịch đảo phân số cho Tìm phân số Bài (3,0 đ) Cho ABC vuông A  AC  AB  , đường cao AH  H  BC  Trên tia HC lấy điểm D cho HA  HD Đường vng góc với BC D cắt AC E Chứng minh hai tam giác BEC ADC đồng dạng Tính độ dài đoạn BE theo m  AB Gọi M trung điểm đoạn BE Chứng minh hai tam giác BHM BEC đồng dạng Tính số đo góc AHM GB HD  Tia AM cắt BC G Chứng minh BC AH  HC Bài (1,0 đ) 2010 x  2680 Tìm giá trị nhỏ biểu thức A  x2  Bài (1,0 đ) Tìm tất tam giác vng có số đo cạnh số nguyên dương số đo diện tích số đo chu vi ĐÁP ÁN Câu x  214 x  132 x  54 a)   6 86 84 82 x  214 x  132 x  54  1 2 30 86 84 82 x  300 x  300 x  300    0 86 84 82 1     x  300        86 84 82   x  300 b) Ta có: x  x  20   x   x   x  11x  30   x   x   x  13x  42   x   x   ĐKXĐ: x  4; x  5; x  6; x  7 Phương trình trở thành: 1 1     x   x  5  x  5 x    x   x   18 1 1 1       x  x  x  x  x  x  18 1    x  x  18  18  x    18  x     x   x      x  13 x    Từ tìm x  13; x  Câu a Đặt b  c  a  x  0; c  a  b  y  0; a  b  c  z  yz xz x y ;b  ;c  Từ suy a  2 y  z x  z x  y  y x   x          Thay vào ta được: A  2x 2y 2z  x y   z z   y z     x   z y   Từ suy A      hay A  b a b c ayz  bxz  cxy   0   ayz  bxz  cxy  x y z xyz Ta có: x y z x y z   1     1 a b c a b c Từ x2 y z  xy xz yz      2.    1 a b c  ab ac bc  x2 y z cxy  bxz  ayz     1 a b c abc x2 y z    1 (dpcm) a b c Câu Gọi tử số phân số cần tìm x mẫu số cua phân số cần tìm x  11 Phân số cần x tìm  x  11 x  11 x7 Khi bớt tử số đơn vị tăng mẫu số lên đơn vị ta phân số:  x  15 x  15 x x  15 Theo ta có phương trình:   x  5 (thỏa mãn) x  11 x  5 Từ ta tìm phân số Câu A E M B H G C D 1) Hai tam giác ADC BEC có: CD CA (hai tam giác vuông CDE CAB đồng dạng)  C chung; CE CB Do : BEC ADC Suy : BEC  ADC  1350 (vì AHD vng cân H theo giả thiết) Nên AEB  450 ABE vng cân A suy BE  AB  m BM BE AD   2) Ta có:  DoBEC ADC  BC BC AC Mà AD  AH (tam giác AHD vuông cân H) BM AD AH BH BH Nên      ABH CBA BC AC AC AB BE Do BHM BEC (c.g.c) , suy BHM  BEC  1350  AHM  450 3) ABE vuông cân A, nên tia AM tia phân giác BAC GB AB AB ED AH HD Suy :  , mà   ABC DEC    ED / / AH   GC AC AC DC HC HC GB HD GB HD GB HD      GC HC GB  GC HD  HC BC AH  HC Do đó: Câu 2010 x  2680 A x2  335  x  3 335 x  335  335 x  2010 x  3015    335   335 x2  x2  Vậy GTNN A 335 x  3 Câu Gọi cạnh tam giác vuông x, y, z ; cạnh huyền z ( x, y, z số nguyên dương) Ta có: xy   x  y  z 1 x  y  z (2) Từ (2) suy z   x  y   xy, t hay (1) vào ta có: z2   x  y   4 x  y  z  z2  4z   x  y   4 x  y  z2  4z    x  y    z  2   x  y   , suy z   x  y  z  x  y  , thay vào 1 ta được: 2 xy   x  y  x  y   xy  x  y  8  x   y     1.8  2.4 Từ ta tìm giá trị x, y, z là:  x; y; z   5;12;13; 12;5;13;  6;8;10; 8;6;10

Ngày đăng: 25/07/2019, 15:22

TỪ KHÓA LIÊN QUAN

w