1. Trang chủ
  2. » Giáo án - Bài giảng

Lý thuyết sóng tuyến tính linear wave theory

13 84 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 452,21 KB

Nội dung

LINEAR WAVE THEORY Linear Wave Fundamentals C a = Wave Am plitude To describe a wave: H, L, T, C Wave steepness: H/L Wave speed: C = L/T Linear Wave Theory – Principle of Superposition Wave Classification: Spectrum capillary waves, gravity waves, infra-gravity waves, tidal waves Wave Classification: Generation * impulse (free wave) - tsunami * constant forcing (forced) - tide, wind Mechanism: Wind Generating Waves Plane Water Surface Wind High p Low p Water Surface /w waves at time t1 Wind Direction friction friction Water Surface /w waves at time t2 Wind Direction Reduced Static Pressure Stream Lines Wave Classification: Water Depth DEEP WATER Wave Direction Wave Base Water Particle Movem ent SHALLOWER WATER Motion of water particles Wave Classification: Motion Progressive waves Standing waves Linear Wave Theory (Airy theory) Assumptions: • incompressible, homogeneous fluid • neglect surface tension and Coriolis • uniform and constant pressure at the surface • ideal fluid (no viscosity) • horizontal, impermeable bottom • small wave height and invariant form • long-crested waves (2D approach) George Airy, 1801-1892 Basic Relationships Wave profile:  2x 2t  H   a cos     cos  kx  t  T   L k 2 2 ,  L T Wave phase speed: C L   T k Dispersion relationship Wave phase speed: C C gL  2d    2  L  gT  2d    2  L  Wave length: L gT  2d     CT 2  L  Dispersion Mechanism t1 t2 Waves (short, irreg.) Swell (long, reg.) Asymptotic Solutions 10 2 d/ L Deep water: (d/L >1/2)  2d    1  L  gT  2d  gT   1.56T  2  L  2 Shallow water: (d/L < 1/25) L) h( 2 d/ ta n ( nh ta C 2 ) d/L 0.1 2d  2d    L  L  gT  d  L    gdT 2  L  = tanh(2d/L) Co  = gT  d  gT Lo    1.56T  2  L  2 Shallow 0.01 0.01 Transitional 0.1 Deep 10 2 d/L gT  2d     gd 2  L  Practical Solution of the Dispersion Relationship  2d  L  Lo    L  (iterative solution required) d d  Lo L L Lo  2d     d d  L  (from Table) Hyperbolic Functions y  sinh x  0.5( e x  e x ) dy / dx  cosh x y  cosh x  0.5(e x  e  x ) dy / dx  sinh x y  x  ex  e x ex  e x Variation of Wave Parameters with d/Lo Wave Period vs Depth n1  t T1 n2  t T2 n1  n2  T1  T2 For a simple harmonic wave train, the wave period is independent of depth! Water Particle Velocity Water Particle Velocity u H gT cosh  2( z  d ) / L   2x 2t  cos    L cosh(2d / L ) T   L w H gT sinh  ( z  d ) / L   x t  sin    L cosh(2 d / L ) T   L Particle Acceleration ax  g H cosh  ( z  d ) / L   x t  sin    L cosh(2 d / L) T   L az   g H sinh  2( z  d ) / L   2x 2t  cos    L cosh(2d / L ) T   L Water Particle Motion: Equations   H cosh  2( z  d ) / L   2x 2t  sin    sinh(2d / L) T   L H sinh  2( z  d ) / L   2x 2t  cos    sinh(2d / L) T   L A H cosh  2( z  d ) / L  sinh(2d / L) B H sinh  2( z  d ) / L  sinh(2d / L ) 2   1 A2 B Water Particle Motion: Trajectory Shallow water: H L H zd A , B 2 d d Deep water: AB H z / L e Pressure Under Waves Pressure Under Waves p '  g cosh  2( z  d ) / L  H cosh(2d / L)  2x 2t  cos     gz  pa T   L Atmospheric pressure Dynamic component due to acceleration p  p ' pa Water surface profile Static component of pressure (relative pressure) Pressure Under Waves Kz  cosh  2( z  d ) / L  cosh  d / L  Pressure response factor p '  g (K z  z ) At bottom (z = -d): Kz  K  Water level from pressure:  cosh  2d / L  N ( p  gz ) gK z (N = for linear waves) Wave Energy Potential energy: x L EPT   x d ( EPT )  gzdm 1 d ( EPT )  gd L  gH L 16 EP  EPT  Enowav  d  dm  (d  )dx z gH L 16 w dz u dx Kinetic Energy: x L  EK    d (E x d K ) gH L 16 d ( EK )   u  w2 dxdz w dz u dx Total Energy: E  EK  EP  gH L (per wave and unit width) E  gH (per wave and unit surface area) 10 Wave Energy Flux Definition (rate of energy transfer): P L x L   p D udzdx x d pD  p  gz 1 2kd  L P  gH     EnC  sin 2kd  T Group Velocity t1 t2 t3 10 t4 t5 t6 C > Cg Distance from Wavemaker Cg Group Velocity 1 4d / L  L C g  1   nC  sinh(4d / L )  T Cg  Lo  Co 2T (deep water) Cg  L  C  gd T (shallow water) 11 Superposition of Waves Two waves:   1  2   x 2t  H  2x t  H cos    cos   T1  T2   L1  L2 Envelope:  L L T T  env   H cos   x   t  TT  L1 L2  Envelope of Superimposed Waves Cnode = Cg Energy Transport 12 Summary of Linear Wave Theory 13 .. .Wave Classification: Spectrum capillary waves, gravity waves, infra-gravity waves, tidal waves Wave Classification: Generation * impulse (free wave) - tsunami * constant... Stream Lines Wave Classification: Water Depth DEEP WATER Wave Direction Wave Base Water Particle Movem ent SHALLOWER WATER Motion of water particles Wave Classification: Motion Progressive waves Standing... Motion of water particles Wave Classification: Motion Progressive waves Standing waves Linear Wave Theory (Airy theory) Assumptions: • incompressible, homogeneous fluid • neglect surface tension

Ngày đăng: 19/04/2019, 11:20

TỪ KHÓA LIÊN QUAN

w