HIGHER-ORDER WAVE THEORY Higher-Order Wave Theory Higher-Order Wave Theory • Stokes wave theory • Cnoidal wave theory • Solitary wave theory • Stream-function theory • Korteweg - de Vries equation • Boussinesq equation Wave Profiles from Different Theories Governing Equation and Boundary Conditions 2 2 0 x z 0 z d z ( x, z , t ) ( x L, z , t ) ( x, z , t ) ( x, z , t T ) governing equation bottom BC periodicity DFSBC 2 p gz CB (t ) z ( x, t ) x z t z t x z z ( x, t ) KFSBC Characterize Nonlinearity H Wave steepness L d Relative water depth L H/L H Relative wave height d/L d 2 L H HL UR d d d Ursell number Regions of Validity for Wave Theories Stokes Finite-Amplitude Wave Theory Perturbation approach: 1 33 (velocity potential) 1 2 33 (surface elevation) ka 2a H L L (perturbation parameter) Stokes 2nd Order Wave Theory Wave Profile: H 2x t cos T L H cosh(2d / L) x 4t cosh(4d / L) cos L sinh (2d / L) T L Stokes 2nd Order Wave Theory Mass Transport in 2nd-Order Stokes Waves Mean drift velocity: H C cosh ( z d ) / L U ( z) L sinh (2 d / L) Cnoidal Wave theory Periodic waves in shallow water (UR > 20) Solution expressed in elliptic integrals (K) and functions (cn): x t ys yt Hcn K ( k ) L T , k Cnoidal Wave Theory: Normalized Surface Profile Cnoidal Wave Theory In the limit: k 1, cn solitary wave k= sinusoidal wave (Isobe, M 1985 ”Calculation and application of firstorder cnoidal wave theory,” Coastal Engineering, 9, 309-325) Solitary Wave Theory Wave form is entirely above the SWL H x Ct sech ho ho u h gho o (sech x = 1/sinh x) C g ( H ho ) Stream Function Theory Developed by Dean (1965, 1974) Describe wave through sine and cosine functions Determine coefficient values of each term so that the best fit in a leastsquare sense is obtained with respect to fulfilling the dynamic free surface boundary condition Boussinesq equation Shallow water hydrostatic pressure continuity d u t t u u 3u u g d momentum t x x x t Eliminate u 2 2 2 2 gd gd d t x x d x2 Korteweg-deVries Equation u u u ho2 3u gho u gho t x x x ... Wave Theory: Normalized Surface Profile Cnoidal Wave Theory In the limit: k 1, cn solitary wave k= sinusoidal wave (Isobe, M 1985 ”Calculation and application of firstorder cnoidal wave theory, ”... Stokes 2nd Order Wave Theory Mass Transport in 2nd-Order Stokes Waves Mean drift velocity: H C cosh ( z d ) / L U ( z) L sinh (2 d / L) Cnoidal Wave theory Periodic waves... Wave Theory Perturbation approach: 1 33 (velocity potential) 1 2 33 (surface elevation) ka 2a H L L (perturbation parameter) Stokes 2nd Order Wave Theory