1. Trang chủ
  2. » Khoa Học Tự Nhiên

NTT tính đơn điệu của hàm số BT (1)

7 119 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 918,82 KB

Nội dung

https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ BÀI TẬP TỰ LUYỆN Giáo viên: NGUYỄN THANH TÙNG Câu 1: Hàm số y  x3  3x  x  đồng biến khoảng I BÀ A (; 3) (1; ) B (3;1) C (; 1) (3; ) D (1;3) Câu (Đề minh họa THPTQG – 2017) Hàm số y  x  đồng biến khoảng nào?   C   ;     B  0;   GI 1  A  ;   2  D  ;0  Câu 3: Khi nói tính đơn điệu hàm số y   x4  x3  10 , ta có phát biểu sau: 2) Hàm số nghịch biến 3;   3) Hàm số nghịch khoảng (;0)  3;   4) Hàm số đồng biến  ;3 ẢN 1) Hàm số đồng biến khoảng (;3) G Trong phát biểu trên, có phát biểu đúng? A.1 B.2 C.3 20 Câu 4: Khi nói tính đơn điệu hàm số y  D.4 x  2x 1 , ta có phát biểu sau: x2 1) Hàm số nghịch biến khoảng (1;3) 17 2) Hàm số đồng biến khoảng (; 1)  (3; ) 3) Hàm số nghịch biến khoảng (1;3) \ 2 -1 4) Hàm số đồng biến khoảng (;1)  3;   99 Trong phát biểu trên, có phát biểu đúng? A.1 B.2 C.3 D.4 Câu 5: Trong phát biểu sau hàm số y   , phát biểu sau đúng? x A Hàm số nghịch biến với x  B Hàm số nghịch biến (;0) (0; ) D Hàm số đồng biến tập N Ô C Hàm số đồng biến (;0) (0; ) \ 0 TH Câu Cho hàm số y  (m  1) x3  (m  3) x  (m  5) x  Tất giá trị m để hàm số đồng biến tập xác định 1 A m  1 B 1  m  C m  D m  3 Câu Cho hàm số y   x3  (m  1) x2  (2m2  3m  2) x  với m tham số thực I Trong điều kiện sau m , đâu điều kiện đầy đủ để hàm số nghịch (2; ) ? A   m  Câu 8: Cho hàm số y  A 2  m  B m C m  D m  3 m  mx  Điều kiện đầy đủ m để hàm số nghịch biến (;1] xm B 2  m  C 2  m  D 2  m  Hocmai – Ngôi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) mx  nghịch biến khoảng  ;  xm A 3  m  B 2  m  C 3  m  2 D 3  m  Câu 10 (Đề minh họa THPTQG – 2017) Tìm tất giá trị thực tham số m cho hàm số tan x    đồng biến khoảng  0;  y tan x  m  4 Câu 9: Giá trị m để hàm số y  I BÀ Câu 11: Cho hai hàm số f ( x)  x  m sin x g ( x)  (m  3) x  (2m  1) cos x Tất giá trị m làm cho hàm số f ( x) đồng biến A m  1 g ( x) nghịch biến B m  C 1  m  D 1  m  GI Câu 12 Cho hàm số y  a sin x  b cos x  x với a, b tham số thực Điều kiện a, b để hàm số đồng biến ẢN A a, b  C a  b  B a  b2  D a  b2  G 17 20 -1 ĐÁP ÁN 2B 3C 4A 5B 6D 7A 8D 9C 10A 11D 12B 99 1C N Ơ TH I Hocmai – Ngơi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) LỜI GIẢI CHI TIẾT Câu 1: Hàm số y  x3  3x  x  đồng biến khoảng A (; 3) (1; ) C (; 1) (3; ) B (3;1) D (1;3) Hướng dẫn +  x  1 Ta có y '  3x  x  ; y '     dấu y ' : x  Suy hàm số đồng biến khoảng (; 1) (3; )  Đáp án C I BÀ + GI Câu (Đề minh họa THPTQG – 2017) Hàm số y  x  đồng biến khoảng nào? Hướng dẫn D  ;0  + Ta có y '  x ; y '   x    C   ;     B  0;   G ẢN 1  A  ;   2  Dấu y ' : 20 Suy hàm số đồng biến khoảng  0;    Đáp án B Câu Khi nói tính đơn điệu hàm số y   x4  x3  10 , ta có phát biểu sau: 2) Hàm số nghịch biến 3;   3) Hàm số nghịch khoảng (;0)  3;   4) Hàm số đồng biến  ;3 17 1) Hàm số đồng biến khoảng (;3) -1 Trong phát biểu trên, có phát biểu đúng? A.1 B.2 C.3 99 Hướng dẫn D.4 x  Ta có y '  4 x3  12 x2  4 x2 ( x  3) ; y '   4 x ( x  3)    x  + + Suy dấu y ' : N Ô Do hàm số liên tục TH Do phát biểu 3) sai phát biểu 1), 2), 4) đúng, nghĩa có phát biểu  Đáp án C Chú ý: Do x  nghiệm kép nên dấu y ' khơng đổi qua (nghĩa liên tục x  ) nên kết luận 2), 4) x2  x  , ta có phát biểu sau: x2 I Câu 4: Khi nói tính đơn điệu hàm số y  1) Hàm số nghịch biến khoảng (1;3) Hocmai – Ngôi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) 2) Hàm số đồng biến khoảng (; 1)  (3; ) 3) Hàm số nghịch biến khoảng (1;3) \ 2 4) Hàm số đồng biến khoảng (;1)  3;   I BÀ Trong phát biểu trên, có phát biểu đúng? A.1 B.2 C.3 D.4 Hướng dẫn Tập xác định D  \ 2 + + GI x  x2  4x  Ta có y '  ; y '   x2  4x     Ta có dấu y ' : ( x  2) x  3 ẢN Suy có phát biểu 4)  đáp án A G Câu 5: Trong phát biểu sau hàm số y   , phát biểu sau đúng? x A Hàm số nghịch biến với x  20 B Hàm số nghịch biến (;0) (0; ) C Hàm số đồng biến (;0) (0; ) Hướng dẫn \ 0 -1 Tập xác định: D  \ 0 17 D Hàm số đồng biến tập 99  với x  Suy hàm số nghịch biến (;0) (0; )  đáp án B x2 Chú ý: Kí hiệu x  tập hợp, suy A sai Ta có y '   N Ơ Câu Cho hàm số y  (m  1) x3  (m  3) x  (m  5) x  Tất giá trị m để hàm số đồng biến tập xác định 1 A m  1 B 1  m  C m  D m  3 Tập xác định: D  Cách 1: +) Với m  1 : (*)  x   với x  I Yêu cầu toán tương đương với: y '  (m  1) x2  2(m  3) x  m   với x  (*) TH Hướng dẫn (vơ lí) m  1 a  m    +) Với m  1: (*)     m   đáp án D m  '  12m     Cách 2: Ta có (*)  m( x  1)2   x2  x  với x  Hocmai – Ngơi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) +) Với x  ta được:  12 với x  (luôn đúng) x ∞ x  6x   g ( x ) x   m  max g ( x) +) Với x  (*)  m   với g'(x) + 0x(;1)(1;) + ( x  1) x2  x  x  Xét g ( x)   với g(x) ( x  1)2 ∞ ∞ 8( x  2) ; g '( x)   x  2  g '( x)  ( x  1)3 +∞ I BÀ lim g ( x)  1 lim g ( x)   x  x 1 ẢN GI Do ta có bảng biến thiên sau: 1 Khi ta có max g ( x)   m  Vậy m  giá trị cần tìm  đáp án D 3 x( ;1)(1;) Câu Cho hàm số y   x3  (m  1) x2  (2m2  3m  2) x  với m tham số thực Trong điều kiện sau m , đâu điều kiện đầy đủ để hàm số nghịch (2; ) ? B m C m  D m  20 Hướng dẫn G A   m  3 m  17 Yêu cầu toán  y '  3x2  2(m  1)  2m2  3m   0, x  (2; )  f ( x)  3x2  2(m 1)  (2m2  3m  2)  0, x  (2; ) (*) Suy f ( x)  có nghiệm phân biệt x1  + x1  m  7(m2  m  1)  m  7(m2  m  1) x2  với 3 + x2 N Ô Do f ( x)   x   ; x1    x2 ;   Khi : 99 m  Suy dấu f ( x) là: -1 Ta có  '  (m  1)2  3(2m2  3m  2)  7(m2  m  1)  0, m   m  7(m2  m  1) (*)   2;     ; x1    x2 ;     2;     x2 ;    x2   2 A 2  m  I Câu 8: Cho hàm số y  TH 7(m2  m  1)  (m  5)2 6m2  3m  18   7(m2  m  1)  m     m   m  5  3   m      m   đáp án A m  5 mx  Điều kiện đầy đủ m để hàm số nghịch biến (;1] xm B 2  m  C 2  m  D 2  m  Hướng dẫn Hocmai – Ngơi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) Ta có y '  m2  với x  m ( x  m) Để hàm số nghịch biến khoảng (;1] y  0, x   ;1  m2   0, x   ;1 ( x  m)2 I BÀ m2   2  m  2  m      2  m  1  đáp án D m  1 m  (;1] m  mx  nghịch biến khoảng  ;  xm B 2  m  C 3  m  2 D 3  m  Câu 9: Giá trị m để hàm số y  GI A 3  m  Hướng dẫn ẢN Ta có y '  m2  m2   y  0,  x   ;   0, x   ;  với Khi tốn x   m    ( x  m) ( x  m)2 G  3  m  3  m  m       3  m  2  đáp án C m  m  2  m   ;  20 A m   m  17 Câu 10 (Đề minh họa THPTQG – 2017) Tìm tất giá trị thực tham số m cho hàm tan x    số y  đồng biến khoảng  0;  tan x  m  4 B m  D m  -1 Hướng dẫn C  m  x 0;   4  t   0;1 Khi tốn phát biểu lại là: Đặt t  tan x  99 t 2 đồng biến khoảng  0;1 ” t m m  m    m  m      Đáp án A m  Bài toán tương đương y '  ,   t  (0;1)     (t  m)2 m  (0;1) 1  m  m   “ Tìm tất giá trị thực tham số m cho hàm số y  N Ô Câu 11: Cho hai hàm số f ( x)  x  m sin x g ( x)  (m  3) x  (2m  1) cos x Tất giá trị m làm cho hàm số f ( x) đồng biến B m  C 1  m  D 1  m  I Hướng dẫn TH A m  1 g ( x) nghịch biến  f '( x)   m cos x  0, x  Điều kiện toán tương đương   g '( x)  m   (2m  1)sin x  0, x  h(t )  mt   0, t  cos x   1;1    l (t )  (2m  1)t  m   0, t  sin x   1;1 Hocmai – Ngơi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ https://www.facebook.com/groups/hotroonthi01/ Chuyên đề: Hàm số Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học: Pen C – Trắc nghiệm (Thầy Lê Anh Tuấn – Thầy Nguyễn Thanh Tùng) I BÀ m  h(1)  m   m  1 h(1)  m         m  4  1  m   đáp án D l (1)   m    l (1)  3m   m   Chú ý: Trong toán ta dùng tính chất dấu nhị thức bậc sau: Cho nhị thức bậc f ( x)  ax  b , :  f ( )   f ( )  f ( x)  0, x   ;     ; f ( x)  0, x   ;      f ( )   f ( )  GI Câu 12 Cho hàm số y  a sin x  b cos x  x với a, b tham số thực A a, b  ẢN Điều kiện a, b để hàm số đồng biến Giải  y '  a cos x  b sin x   0, x  G Hàm số đồng biến C a  b  B a  b2  D a  b2  (*) 20 Ta có (a cos x  b sin x)2   a  b2  cos2 x  sin x   a  b2   a  b2  a cos x  b sin x  a  b  a cos x  b sin x  1  1  17   a  b2  a cos x  b sin x    a  b2 hay a  b2 ;1  a  b2   -1 Khi (*)   a  b2   a  b2   a  b2   đáp án B : Nguyễn Thanh Tùng Nguồn : Hocmai.vn 99 Giáo viên N Ô TH I Hocmai – Ngơi trường chung học trò Việt !! Tổng đài tư vấn: 1900 69-33 - Trang | - https://www.facebook.com/groups/2000daudaihoc/ ... Dấu y ' : 20 Suy hàm số đồng biến khoảng  0;    Đáp án B Câu Khi nói tính đơn điệu hàm số y   x4  x3  10 , ta có phát biểu sau: 2) Hàm số nghịch biến 3;   3) Hàm số nghịch khoảng... đáp án A G Câu 5: Trong phát biểu sau hàm số y   , phát biểu sau đúng? x A Hàm số nghịch biến với x  20 B Hàm số nghịch biến (;0) (0; ) C Hàm số đồng biến (;0) (0; ) Hướng dẫn... 2017) Tìm tất giá trị thực tham số m cho hàm số tan x    đồng biến khoảng  0;  y tan x  m  4 Câu 9: Giá trị m để hàm số y  I BÀ Câu 11: Cho hai hàm số f ( x)  x  m sin x g ( x) 

Ngày đăng: 18/01/2019, 08:16

TỪ KHÓA LIÊN QUAN

w