Bài toán biên đối với phương trình đạo hàm riêng mờ dạng Hyperbolic

110 188 0
Bài toán biên đối với phương trình đạo hàm riêng mờ dạng Hyperbolic

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MỞ ĐẦU 1. Lịch sử vấn đề v  l½ do chọn đề t i Lþ thuyết tập mờ câ ứng dụng trong nhiều lĩnh vực như thống k¶, giải t½ch số, kỹ thuật điều khiển, xử lþ h¼nh ảnh v  t½n hiệu, kỹ thuật y sinh... Lþ thuyết điều khiển mờ câ ưu điểm vượt trội trong lĩnh vực tự động hâa v  kỹ thuật với khả năng xử lþ nhiều b i to¡n thực tế m  khâ câ thể mæ tả bằng cæng thức to¡n học ch½nh x¡c v  điều khiển bằng c¡c kỹ thuật thæng thường [11, 33, 35]. Khi một vấn đề trong thế giới thực được mæ h¼nh hâa th nh c¡c b i to¡n gi¡ trị ban đầu của một phương tr¼nh vi ph¥n thường hoặc phương tr¼nh đạo h m ri¶ng th¼ hoặc l  c¡c dữ kiện ban đầu khæng được biết ch½nh x¡c hoặc l  c¡c h m phụ thuộc chứa c¡c thæng số khæng chắc chắn hoặc l  điều kiện bi¶n câ sai số : : : V¼ vậy, y¶u cầu thiết yếu được đặt ra l  l m thế n o để giải quyết c¡c b i to¡n câ chứa yếu tố mơ hồ, khæng chắc chắn n y? C¥u trả lời được đề xuất lần đầu ti¶n bởi Gi¡o sư Lotfali Askar Zadeh, với c¡c kh¡i niệm cơ bản về lþ thuyết tập mờ [59] v  sau đâ l  lþ thuyết logic mờ (năm 1973). Mặc dò vậy, tầm quan trọng của lþ thuyết mờ v  logic mờ chỉ được khẳng định khi trung t¥m nghi¶n cứu logic mờ của Nhật Bản th nh lập v o năm 1989. Sau khi câ nhiều ứng dụng câ þ nghĩa trong thực tiễn, lþ thuyết mờ đ¢ được cộng đồng khoa học thế giới ghi nhận, đ¡nh dấu bởi sự kiện Viện kỹ thuật Điện v  Điện tử của Mỹ cho th nh lập tạp ch½ "Fuzzy Sets and Systems" năm 1978 v  tạp ch½ IEEE Transactions on Fuzzy Systems v o năm 1993. Cho tới ng y nay, câ rất nhiều sản phẩm điện tử sử dụng cæng nghệ logic mờ như: m¡y điều háa nhiệt độ, m¡y giặt, m¡y rửa b¡t, thang m¡y, m¡y ảnh, tr½ tuệ nh¥n tạo trong

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ——————— * ——————— HÀ THỊ THANH TÂM BÀI TỐN BIÊN ĐỐI VỚI PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG MỜ DẠNG HYPERBOLIC LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2018 Mục lục Lời cam đoan Lời cảm ơn Mục lục MỞ ĐẦU Chương KIẾN THỨC CHUẨN BỊ 16 1.1 Không gian metric số mờ 17 1.1.1 Tập mờ 17 1.1.2 Nguyên lý suy rộng Zadeh 17 1.1.3 Không gian metric số mờ 19 1.2 Sơ lược giải tích mờ 24 1.2.1 Hàm nhận giá trị số mờ 24 1.2.2 Các tính chất giải tích hàm nhận giá trị số mờ 25 1.3 Sơ lược giải tích bậc phân số mờ 32 1.4 Một số định lý điểm bất động 33 Chương BÀI TỐN BIÊN ĐỐI VỚI PHƯƠNG TRÌNH HYPERBOLIC MỜ CĨ TRỄ 35 2.1 Bài tốn biên phương trình hyperbolic mờ có trễ miền bị chặn 36 2.1.1 Đặt toán 36 2.1.2 Nghiệm tích phân 37 2.1.3 Tính giải tốn 40 2.2 Bài toán biên phương trình hyperbolic mờ có trễ miền vô hạn 46 2.2.1 Đặt toán 46 2.2.2 Nghiệm tích phân 47 2.2.3 Tính giải tốn 47 2.3 Một số ví dụ minh họa 55 Chương BÀI TOÁN BIÊN ĐỐI VỚI PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG MỜ DẠNG HYPERBOLIC BẬC PHÂN SỐ 60 3.1 Đạo hàm bậc phân số hàm hai biến giá trị số mờ 61 3.2 3.3 3.1.1 Đạo hàm bậc phân số hàm hai biến giá trị thực 61 3.1.2 Đạo hàm bậc phân số hàm hai biến giá trị mờ 64 Bài tốn biên phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số miền bị chặn 70 3.2.1 Đặt toán 70 3.2.2 Tính giải toán 71 Bài tốn biên phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số miền vô hạn 79 3.3.1 Đặt toán 79 3.3.2 Tính giải toán 80 3.4 Một số ví dụ minh họa 83 Chương MỘT SỐ TÍNH CHẤT ĐỊNH TÍNH CỦA NGHIỆM CỦA PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG MỜ DẠNG HYPERBOLIC BẬC PHÂN SỐ 88 4.1 Tính ổn định Ulam 89 4.1.1 Tính ổn định Hyers-Ulam 90 4.1.2 Tính ổn định Hyers-Ulam-Rassias 94 4.2 Tính ổn định Lyapunov 97 4.3 Một số ví dụ minh họa 100 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 105 TÀI LIỆU THAM KHẢO 106 MỘT SỐ KÍ HIỆU THƯỜNG DÙNG TRONG LUẬN ÁN R Tập hợp số thực 17 E Không gian số mờ 19 KC Tập tất tập lồi, compact khác rỗng R 27 F(X) Tập tất tập mờ tập hợp X 17 [u]α + − + = {x ∈ R : u(x) ≥ α, < α ≤ 1} = [u− α , uα ], uα , uα ∈ R 19 [u]0 = {x ∈ R : u(x) > 0} 19 Ec {u ∈ E : α → [u]α liên tục theo metric Hausdorff trên[0, 1]} 26 len[u]α − = u+ α − uα 20 ∫ +∞ 32 B(., ) Hàm Gamma xác định Γ(α) = xα−1 e−x dx ∫1 Hàm Beta xác định B(a, b) = xa−1 (1 − x)b−1 dx, a, b > U Tập khác rỗng R2 24 Jab = [0, a] × [0, b], a, b > 36 Jrab = [−r, a] × [−r, b], r, a, b > 36 Jr0 = [−r, 0] × [−r, 0], r > 36 J˜rab = Jr \ (0, a] × (0, b], r, a, b > 36 J0∞ = [0, ∞) × [0, ∞) 46 Jr∞ = [−r, ∞) × [−r, ∞), r > 46 J˜r∞ = Jr∞ \ (0, ∞) × (0, ∞), r > 46 ΩbT = [0, T ] × [0, b], T, b > 70 Ωb∞ ∂f ∂x = [0, ∞) × [0, b], b > 79 Đạo hàm riêng Hukuhara suy rộng hàm giá trị mờ f theo x 29 Dxy u(x, y) Đạo hàm riêng Hukuhara suy rộng cấp hai hàm giá trị 30 Γ(.) số mờ u theo x y 32 RL q I 0+ u Tích phân Riemann - Liouville bậc q hàm giá trị thực u 32,61 C Đạo hàm Caputo bậc q hàm giá trị thực u 61 RL q F I 0+ u Tích phân Riemann - Liouville bậc q hàm giá trị mờ u 32,65 RL q gH D u Đạo hàm gH-Riemann-Liouville bậc q hàm giá trị mờ u 33 Đạo hàm gH-Caputo bậc q hàm giá trị mờ u 33,68 dH (A, B) Khoảng cách Hausdorff tập A tập B 24 d∞ (u, v) = sup dH ([u] , [v] ) H(u, v) = sup d∞ (u (x, y) , v (x, y)) Dq u C q gH D u α α 24 0≤α≤1 26 (x,y)∈U d0C (φ, ϕ) = Hλ (u, v) = sup sup d∞ (φ(ω, θ), ϕ(ω, θ)) (x,y)∈U dr (u, v) 36 (ω,θ)∈Jr0{ = sup (t,x)∈ΩbT } d∞ (u (x, y) , v (x, y))e−λ(x+y) { } r1 r2 t x d∞ (u(t, x), v(t, x)) , r = (r1 , r2 ), r1 , r2 > { d∞ (u(t, x), v(t, x))e−βt } 40 72 Hβ0 (u, v) = ψ(x, y) Tψf [u](x, y) = η1 (x) ⊕ [η2 (y) ⊖H u(0, 0)], (x, y) ∈ U ∫ x∫ y = ψ(x, y) ⊖H (−1) f (s, t, u(s,t) )dtds, (x, y) ∈ U Fψf,q [u](t, x) = ψ(t, x) C(U, E) Tập tất hàm liên tục từ U vào E L1 (U, X) Tập tất hàm khả tích từ U vào X, X = R X = E 61 L∞ (U, R) Tập tất hàm bị chặn từ U vào R 94 W1 (U, E) Tập tất hàm u : U → E cho u, sup (t,x)∈Ωb∞ 80 0 RL q ⊖H (−1)F I0+ f (t, x, u(t, x)), (t, x) ∈U Tập tất hàm u : U → E cho u, f Cλ,ψ (Jrab , E) 73 30 ∂u gH-khả vi ∂x khác kiểu Cλ (Jrab , E) 42 ∂u gH-khả vi ∂x kiểu W2 (U, E) 36 30 Không gian hàm u ∈ C(Jrab , E) cho u(x, y) = φ(x, y), ab (x, y) ∈ J˜r với metric Hλ 40 = {u ∈ Cλ (Jrab , E) : Tψf [u](x, y) ∈ E, (x, y) ∈ Jab } 42 Cλ∞ (Jr∞ , E) Không gian hàm u ∈ C(Jr∞ , E) với metric Hλ thỏa 48 mãn: i) u(x, y) = φ(x, y), (x, y) ∈ J˜r∞ ii) sup (x,y)∈Jr∞ ∞,f Cλ,ψ (Jr∞ , E) Cψf (ΩbT , E) Cβ∞ (Ωb∞ , E) d∞ (u(x, y), ˆ0)e−λ(x+y) < ∞ = {u ∈ Cλ∞ (Jr∞ , E) : Tψf [u](x, y) ∈ E, (x, y) ∈ Jr∞ } 54 = {u ∈ (C(ΩbT , E), dr ) : Fψf,q [u](t, x) ∈ E, (t, x) ∈ ΩbT } 73 Không gian hàm u ∈ C(Ωb∞ , E) với metric Hβ0 (u, v) } { thỏa mãn sup d∞ (u(t, x), v(t, x))e−βt < ∞ 80 = {u ∈ Cβ∞ (Ωb∞ , E) : Fψf,q [u](t, x) ∈ E, (t, x) ∈ Ωb∞ } 83 (t,x)∈Ωb∞ ∞,f Cβ,ψ (Ωb∞ , E) MỞ ĐẦU Lịch sử vấn đề lí chọn đề tài Lý thuyết tập mờ có ứng dụng nhiều lĩnh vực thống kê, giải tích số, kỹ thuật điều khiển, xử lý hình ảnh tín hiệu, kỹ thuật y sinh Lý thuyết điều khiển mờ có ưu điểm vượt trội lĩnh vực tự động hóa kỹ thuật với khả xử lý nhiều tốn thực tế mà khó mơ tả cơng thức tốn học xác điều khiển kỹ thuật thông thường [11, 33, 35] Khi vấn đề giới thực mơ hình hóa thành tốn giá trị ban đầu phương trình vi phân thường phương trình đạo hàm riêng kiện ban đầu khơng biết xác hàm phụ thuộc chứa thông số không chắn điều kiện biên có sai số Vì vậy, yêu cầu thiết yếu đặt làm để giải toán có chứa yếu tố mơ hồ, khơng chắn này? Câu trả lời đề xuất lần Giáo sư Lotfali Askar Zadeh, với khái niệm lý thuyết tập mờ [59] sau lý thuyết logic mờ (năm 1973) Mặc dù vậy, tầm quan trọng lý thuyết mờ logic mờ khẳng định trung tâm nghiên cứu logic mờ Nhật Bản thành lập vào năm 1989 Sau có nhiều ứng dụng có ý nghĩa thực tiễn, lý thuyết mờ cộng đồng khoa học giới ghi nhận, đánh dấu kiện Viện kỹ thuật Điện Điện tử Mỹ cho thành lập tạp chí "Fuzzy Sets and Systems" năm 1978 tạp chí “IEEE Transactions on Fuzzy Systems” vào năm 1993 Cho tới ngày nay, có nhiều sản phẩm điện tử sử dụng công nghệ logic mờ như: máy điều hòa nhiệt độ, máy giặt, máy rửa bát, thang máy, máy ảnh, trí tuệ nhân tạo 10 trò chơi điện tử, Trong lý thuyết tập hợp cổ điển, mức độ thuộc phần tử vào tập hợp đánh giá theo hai khía cạnh - phần tử thuộc không thuộc tập hợp Lý thuyết tập mờ cho phép ta đánh giá mức độ thuộc phần tử vào tập hợp cách "từ từ" Điều mô tả hàm thể "mức độ thuộc" lấy giá trị đoạn [0, 1] (hàm thuộc) Tập mờ tổng quát tập hợp cổ điển, hàm đặc trưng tập hợp cổ điển hàm thuộc đặc biệt tập mờ, nhận giá trị Tuy nhiên, khái niệm tập mờ rộng tổng quát, số hạn chế thường áp đặt cho tập mờ Khi nghiên cứu giải tích mờ, người ta thường xét tốn tập mờ có dạng u : Rn → [0, 1] thỏa mãn số tính chất tính lồi, compact nửa liên tục (được trình bày cụ thể Chương 1) Tập hợp tất tập mờ có tính chất kí hiệu E n , gọi không gian số mờ Để đơn giản, luận án này, chúng tơi trình bày kết với n = 1, kí hiệu E không gian số mờ u : R → [0, 1] Với α ∈ [0, 1], ta kí hiệu tập mức số mờ u [u]α , với [u]α xác định [u]α = {x ∈ R : u(x) ≥ α}, α ∈ (0, 1]; [u]0 = {x ∈ R : u(x) > 0} Khi đó, không gian (E, d∞ ) không gian metric đầy đủ [22], với metric d∞ xác định d∞ (u, v) = sup dH ([u]α , [v]α ), 0≤α≤1 dH khoảng cách Haussdorf hai tập hợp Phép cộng phép nhân vô hướng tập số mờ E xác định tập mức sau: [u ⊕ v]α = {x + y : x ∈ [u]α , y ∈ [v]α } = [u]α + [v]α ; [λ.u]α = {λx : x ∈ [u]α } = λ.[u]α ; α ∈ [0, 1], u, v ∈ E, λ ∈ R Với phép cộng phép nhân vô hướng định nghĩa trên, (E, ⊕, ) trở thành khơng gian nửa tuyến tính điều kiện tính giao hốn, kết 11 hợp phép ” ⊕ ” ”.” thỏa mãn Tuy nhiên không may mắn chuyển phép toán số mờ phép toán tập hợp, từ phản ví dụ tổng [0, 1] + (−1).[0, 1] = [0, 1] + [−1, 0] = [−1, 1] ̸= {0} ta suy hiệu hai phần tử E (định nghĩa theo tập hợp thông thường) lúc tồn (trong E), với việc khơng tồn phần tử đối phần tử phép phân phối (λ1 + λ2 )u = λ1 u ⊕ λ2 u không với λ1 , λ2 ∈ R tùy ý Do đó, (E, ⊕, ) khơng phải khơng gian tuyến tính R Hệ kéo theo (E, ||.||), ||u|| := d∞ (u, ˆ0), không gian định chuẩn, không không gian Banach trang bị tích vơ hướng E để biến E thành khơng gian Hilbert Do kết xây dựng tảng vững giải tích thực, giải tích hàm, kết giải tích khơng gian Banach khơng hữu dụng khơng gian Hơn nữa, (E, d∞ ) không không gian khả ly không compact địa phương (xem Chương 8, [12]) Do phương pháp lập luận liên quan đến tập đếm trù mật hay phương pháp xấp xỉ Galerkin, phương pháp đánh giá lượng sử dụng định lý nhúng compact khó sử dụng khơng gian Việc thiếu tính chất tuyến tính (E, ⊕, ), tính khả ly compact địa phương (E, d∞ ) khiến cho nghiên cứu giải tích khơng gian số mờ gặp nhiều khó khăn Và lý chính, bên cạnh lý tính ứng dụng cao thực tế logic mờ điều khiển mờ, khiến cho giải tích mờ trở thành nhánh nghiên cứu thu hút quan tâm nghiên cứu nhiều nhà toán học thời gian gần Hiện nay, hướng nghiên cứu phương trình vi phân, phương trình vi tích phân phương trình đạo hàm riêng mờ xem mở rộng có ý nghĩa thu hút nhiều nhà khoa học nước nước quan tâm nghiên cứu tính ứng dụng mơ hình 97 Từ giả thiết (4.13), ta thấy với β > ν e−βt d∞ (u(t, x), v(t, x)) ≤ mΦ Φ(t, x) + LG(β, b, q1 , q2 )Hβ0 (u, v) Từ Nhận xét 3.1, ta chọn β ≥ cho cf,Φ = mΦ > − LG(β, b, q1 , q2 ) Điều suy Hβ0 (u, v) ≤ cf,Φ sup Φ(t, x) Do đó, toán (4.1)- (t,x)∈Ωb∞ (4.2) ổn định Hyers-Ulam-Rassias kiểu Định lý chứng minh 4.2 Tính ổn định Lyapunov Trong phần này, chúng tơi nghiên cứu tốn C q gH D u(t, x) = f (t, x, u(t, x)), (t, x) ∈ Ωb∞ = [0, ∞) × [0, b] u(t, 0) = η1 (t), t ∈ [0, ∞), u(0, x) = η2 (x), x ∈ [0, b] (4.1) (4.2) với giả thiết f : Ωb∞ × C(Ωb∞ , E) → E, f (t, x, ˆ0) ≡ ˆ0, η1 ∈ C([0, ∞), E), η2 ∈ C([0, b], E) hàm cho trước cho hiệu η1 (t) ⊖H η1 (0), η2 (x) ⊖H η1 (0) tồn với t ≥ 0, x ∈ [0, b] η1 (0) = η2 (0) = u(0, 0) Trong trường hợp này, số mờ ˆ0 gọi điểm cân hệ động lực xác định phương trình (4.1) Định nghĩa 4.7 Điểm cân ˆ0 toán (4.1)-(4.2) gọi ổn định theo biến t với ε > 0, tồn δ > cho d∞ (η1 (t), ˆ 0) < δ, t ≥ 0, d∞ (η2 (x), ˆ0) < δ, x ∈ [0, b] tất nghiệm u(t, x) toán (4.1)- (4.2) thỏa mãn d∞ (u(t, x), ˆ0) < ε với (t, x) ∈ Ωb∞ Để chứng minh tính ổn định toán (4.1)- (4.2), ta giả sử hàm f thỏa mãn điều kiện 98 (G′3 ) Tồn β > cho d∞ (f (t, x, ϕ1 (t, x)), f (t, x, ϕ2 (t, x))) ≤ L(t + 1)−β d∞ (ϕ1 (t, x), ϕ2 (t, x)) với ϕ1 , ϕ2 ∈ C(Ωb∞ , E), (t, x) ∈ Ωb∞ xét bổ đề sau Bổ đề 4.1 [49] Giả sử r(t, x), a(t, x) b(t, x) hàm số thực liên tục không âm xác định với t, x ∈ R+ Nếu ∫ t∫ x r(t, x) ≤ a(t, x) + b(s, z)r(s, z)dzds, t, x ∈ R+ 0 r(t, x) ≤ (∫ t∫ max a(s, z) exp (s,z)∈[0,t]×[0,x] ) x b(s, z)dzds với t, x ∈ R+ Định lí 4.3 Giả sử f ∈ C(Ωb∞ × C(Ωb∞ , E), E) giả thiết (G′3 ), (G5 ) (trang 80) thỏa mãn Khi đó, điểm cân ˆ0 toán ổn định Chứng minh Theo giả thiết (G′3 ), tồn β > cho d∞ (f (t, x, u(t, x)), f (t, x, v(t, x))) ≤ L(t + 1)−β d∞ (u(t, x), v(t, x)) với (t, x) ∈ Ωb∞ Điều suy d∞ (f (t, x, u(t, x)), f (t, x, v(t, x))) < Ld∞ (u(t, x), v(t, x)), t ≥ 0, x ∈ [0, b] Do đó, điều kiện (G3 ) thỏa mãn Theo Định lý 3.4, với điều kiện ban đầu (4.2), phương trình (4.1) có nghiệm tích phân kiểu Ωb∞ Giả sử u(t, x) nghiệm tích phân kiểu tốn Từ tính chất ii) metric d∞ Mệnh đề 1.3 giả thiết (G′3 ), ta có q ˆ d∞ (u(t, x), ˆ 0) ≤ d∞ (ψ(t, x), ˆ0) + d∞ (RL F I0+ f (t, x, u(t, x)), 0) ≤ d∞ (ψ(t, x), ˆ 0) L + Γ(q1 )Γ(q2 ) ∫ t∫ 0 x (t − s)q1 −1 (x − z)q2 −1 (s + 1)−β d∞ (u(s, z), ˆ0)dzds 99 Áp dụng Bổ đề 4.1, ta nhận d∞ (u(t, x),ˆ 0) ≤ max (s,z)∈[0,t]×[0,x] d∞ (ψ(s, z), ˆ0) ( L × exp Γ(q1 )Γ(q2 ) ∫ t∫ x ) (t − s)q1 −1 (x − z)q2 −1 (s + 1)−β dzds Mặt khác, ta có ∫ t (t − s)q1 −1 (s + 1)−β ds ∫ t = (t − s) q1 −1 (s + 1) −β ∫ ≤ ≤ ( t )q1 −1 ∫ t ( t )q1 −1 − (s + 1) (t −β ds + (t )1−β +1 β−1 t ds + + t (t − s)q1 −1 (s + 1)−β ds +1 )−β ∫ t t (t +1 )−β (t − s)q1 −1 ds ( t )q1 −1 (4.15) q1 với β > Hơn nữa, với t ≥ 0, β > 1, q1 ∈ (0, 1), dễ thấy 1− (t )1−β +1 β−1 ≤ ( t )1−q1 − q1 Kết hợp (4.15) (4.16), ta ∫ t (t − s)q1 −1 (s + 1)−β ds ≤ (4.16) 1 + , với β > 1 − q1 q1 (4.17) Từ suy d∞ (u(t, x), ˆ 0) ≤ max (s,z)∈[0,t]×[0,x] d∞ (ψ(s, z), ˆ0)e Như với ε > 0, tồn δ = εe − Γ(q Lbq2 )Γ(q2 +1) Lbq2 Γ(q1 )Γ(q2 +1) ( 1−q1 + q1 ( 1−q1 + q1 ) ) > 0, cho hàm η1 , η2 thỏa mãn δ δ max d∞ (η1 (s), ˆ0) < max d∞ (η2 (z), ˆ0) < 3 s∈[0,t] z∈[0,x] 100 Điều có nghĩa max (s,z)∈[0,t]×[0,x] d∞ (ψ(t, x), ˆ0) ≤ max d∞ (η1 (s), ˆ0) + max d∞ (η2 (z), ˆ0) s∈[0,t] z∈[0,x] + d∞ (η1 (0), ˆ0) < δ Khi đó, ta d∞ (u(t, x), ˆ0) < ε, ∀ (t, x) ∈ Ωb∞ Vậy điểm cân ˆ0 tốn (4.1)- (4.2) ổn định 4.3 Một số ví dụ minh họa Ví dụ 4.1 Xét phương trình đạo hàm riêng hyperbolic mờ bậc phân số sau C q gH D u(t, x) = u(t, x), (t, x) ∈ Ω3∞ = [0, ∞) × [0, 3] t+x+5 e +t+2 (4.18) với điều kiện biên địa phương u(t, 0) = (t + 1)C, t ∈ [0, ∞), u(0, x) = ex C, x ∈ [0, 3] (4.19) q = (q1 , q2 ) ∈ [0, 1) × [0, 1) C số mờ Với (t, x) ∈ Ω3∞ , ta đặt f (t, x, u(t, x)) = u(t, x) et+x+5 + t + Khi đó, dễ thấy d∞ (f (t, x, u(t, x)), f (t, x, v(t, x))) ≤ d∞ (u(t, x), v(t, x)) e5 + f (t, x, ˆ 0) = ˆ Do đó, f thỏa mãn giả thiết (G3 ) (G4 ) Hơn nữa, với (t, x) ∈ Ω3∞ , ta có d∞ (u(t, 0), ˆ 0) ≤ et d∞ (C, ˆ0) d∞ (u(0, x), ˆ0) ≤ e3 d∞ (C, ˆ0) Như vậy, điều kiện (G5 ) thỏa mãn với M5 = d∞ (C, ˆ0), M6 = e3 d∞ (C, ˆ0) c5 = Theo Định lý 3.4, toán (4.18) -(4.19) có nghiệm 101 tích phân kiểu Ω3∞ Thêm vào đó, theo Định lý 4.1, toán (4.18)-(4.19) ổn định Hyers-Ulam kiểu Mặt khác, ta chọn Φ(t, x) = (t + 1)−a ebx , a > 1, b > 0, với (t, x) ∈ Ω3∞ , ta có I Φ(t, x) = Γ(q1 )Γ(q2 ) ∫ t q1 −1 (t − s) RL q (s + 1) −a ∫ ds x (x − z)q2 −1 ebz dz Từ chứng minh Bổ đề 3.1, ta suy với ε > tùy ý, tồn C > cho ∫ x q ebx [ ( C ) 22 ( C )q ] q2 −1 bz (x − z) e dz ≤ + 1 q2 b b 1+ε b 1+ε Hơn nữa, theo (4.17), ta có đánh giá ∫ t (t − s)q1 −1 (s + 1)−a ds < 1 + − q1 q1 Do đó, ta có RL q I Φ(t, x) [ ( C ) q22 1 ( C )q ] ≤ + (t + 1)a Φ(t, x) 1 Γ(q1 + 1)Γ(q2 + 1)(1 − q1 ) b b 1+ε b 1+ε Như vậy, tồn [ ( C ) q22 ( C )q ] + mΦ = >0 1 Γ(q1 + 1)Γ(q2 + 1)(1 − q1 ) b b 1+ε b 1+ε ν = a cho I Φ(t, x) ≤ mΦ eνt Φ(t, x) Điều chứng tỏ Φ thỏa mãn RL q điều kiện (4.13) Theo Định lý 4.2, toán (4.18) -(4.19) ổn định HyersUlam-Rassias kiểu theo Φ(t, x) = (t + 1)−a ebx , a > 1, b > 0, (t, x) ∈ Ω3∞ Ví dụ 4.2 Xét phương trình đạo hàm riêng hyperbolic mờ bậc phân số C q gH D u(t, x) = (t + 1)−2 (ex + x3 + 3)u(t, x), (t, x) ∈ Ω2∞ = [0, +∞) × [0, 2] (4.20) với điều kiện biên địa phương u(t, 0) = (2t + 1)C, t ∈ [0, +∞), u(0, x) = (x2 + 2x + 2)C, x ∈ [0, 2] (4.21) q = (q1 , q2 ) ∈ [0, 1) × [0, 1), C số mờ 102 Đặt f (t, x, u(t, x)) = (t + 1)−2 (ex + x3 + 3)u(t, x), ∀(t, x) ∈ Ω2∞ Dễ thấy, với u ∈ C(Ω2∞ , E), f (t, x, u(t, x)) hàm liên tục toán (4.20)-(4.21) thỏa mãn điều kiện (G′3 ) với β = 2, L = e2 + 11 Hơn nữa, η1 (t) = (2t + 1)C, η2 (x) = (x2 + 2x + 2)C, với (t, x) ∈ Ω2∞ nên ta có điều kiện (G5 ) thỏa mãn với M5 = d∞ (C, ˆ0), c5 = M6 = 10d∞ (C, ˆ 0) Do đó, theo Định lý 4.3, điểm cân ˆ0 toán (4.20)-(4.21) ổn định Kết luận Chương Trong chương này, chúng tơi nghiên cứu hai kiểu ổn định tốn biên địa phương phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số tính khả vi gH-Caputo: 1) Tính ổn định Ulam (Định lý 4.1 Định lý 4.2) 2) Tính ổn định Lyapunov (Định lý 4.3) Mặc dù, kết tính hút, tính ổn định tiệm cận theo nghĩa Lyapunov tốn phương trình vi phân đạo hàm riêng giải tích cổ điển phong phú, kết xét không gian số mờ hạn chế tốn mở cần nghiên cứu 103 KẾT LUẬN VÀ KIẾN NGHỊ Các kết đạt Trong luận án này, chúng tơi nghiên cứu tốn biên phương trình hyperbolic mờ có trễ tốn biên phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số Luận án đạt kết sau: 1) Định nghĩa hai loại nghiệm tích phân tương ứng với hai kiểu đạo hàm Hukuhara suy rộng hàm hai biến giá trị số mờ toán biên địa phương cho phương trình hyperbolic mờ có trễ Chứng minh tồn loại nghiệm tích phân mờ tốn biên địa phương cho phương trình hyperbolic mờ có trễ miền bị chặn miền vô hạn 2) Xây dựng khái niệm tích phân Riemann - Liouville cho hàm hai biến giá trị mờ chứng minh tính đắn định nghĩa thông qua việc sử dụng Định lý Stacking Từ đưa khái niệm đạo hàm gH-Caputo nhiều ví dụ minh họa 3) Đặt tốn biên địa phương cho phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số tính khả vi gH-Caputo Định nghĩa hai loại nghiệm tích phân tương ứng với hai kiểu đạo hàm gH-Caputo toán Chứng minh tồn nghiệm tốn biên địa phương cho phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số trường hợp vế phải Lipschitz Khi vế phải không Lipschitz, sử dụng phiên Định lý Schauder không gian metric nửa 104 tuyến tính, chúng tơi chứng minh tồn nghiệm toán miền bị chặn 4) Với điều kiện bổ sung vế phải điều kiện biên, chứng minh số tính chất định tính nghiệm tốn biên địa phương cho phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số miền vơ hạn: • Tính ổn định Ulam • Tính ổn định Lyapunov Kiến nghị số vấn đề nghiên cứu Bên cạnh kết đạt luận án, số vấn đề mở liên quan cần tiếp tục nghiên cứu: • Nghiên cứu phương trình đạo hàm riêng mờ bậc phân số có trễ • Nghiên cứu tốn biên khơng địa phương phương trình đạo hàm riêng mờ bậc phân số • Nghiên cứu phương trình đạo hàm riêng mờ ngẫu nhiên • Nghiên cứu phương trình tiến hóa mờ phương pháp nửa nhóm 105 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 1) H.V Long, N.T.K Son, H.T.T Tam, B.C Cuong (2014), On the existence of fuzzy solutions for partial hyperbolic functional differential equations, Int J Comput Intell Syst., 7, No.6, 1159-1173 (SCIE) 2) H.V Long, N.T.K Son, H.T.T Tam (2015), Global existence of solutions to fuzzy partial hyperbolic functional differential equations with generalized Hukuhara derivatives, J Intell Fuzzy Syst., 29, No.2, 939 954 (SCIE) 3) H.V Long, N.T.K Son, H.T.T Tam (2017), The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets Syst., 309, 35-63 (SCI) 4) H.V Long, N.T.K Son, H.T.T Tam, J.-C Yao (2017), Ulam stability for fractional partial integro-differential equation with uncertainty, Acta Math Vietnam 42, No.4, 685 - 700 (Scopus) 5) N.T.K Son, H.T.T Tam, On the stability and global attractivity of solutions of fuzzy fractional partial differential equations, accepted 106 Tài liệu tham khảo [1] S Abbas, M Benchohra, G.M N’Guérékata (2012), Topics in Fractional Differential Equations, Springer, New York [2] S Abbas, M Benchohra, A Petrusel (2014), Ulam stability for partial fractional differential inclusions via Picard operators theory, Electron J Qual Theory Differ Equ., 51, - 13 [3] R.P Agarwal, S Arshad, D O’Regan, V Lupulescu (2013), A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl., 306, 1-13 [4] R.P Agarwal, V Lakshmikantham, J.J Nieto (2010), On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, No.6, 2859-2862 [5] A Ahmadian, S Salahshour, D Baleanu, H Amirkhani, R Yunus (2015), Tau method for numerical solution of a fractional kinetic model and its application to the Oil Palm Frond as a promising source of xylose, J Comput Phys., 294, 562- 584 [6] T Allahviranloo, Z Gouyandeh, A Armand (2014), Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J Intell Fuzzy Syst., 26, No 3, 1481-1490 [7] T Allahviranloo, Z Gouyandeh, A Armand, A Hasanoglu (2015), On fuzzy solutions for heat equation based on generalized Hukuhara differentiability, Fuzzy Sets Syst., 265, 1-23 107 [8] T Allahviranloo, S Abbasbandy and H Rouhparvar (2011), The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method, Applied Soft Computing, 11, No.2, 2186-2192 [9] S Arshad, V Lupulescu (2011), On the fractional differential equations with uncertainty, Nonlinear Anal., 74, No.11, 3685 - 3693 [10] S Arshad (2013), On existence and uniqueness of solution of fuzzy fractional differential equations, Iran J Fuzzy Syst., 10, No.6, 137-151 [11] L.C Barros, R.C Bassanezi, W.A Lodwick (2016), A First Course In Fuzzy Logic, Fuzzy Dynamical Systems, And Biomathematics: Theory And Applications, Springer Berlin Heidelberg [12] B Bede (2013), Mathematics of Fuzzy Sets and Fuzzy Logic, SpringerVerlag Berlin Heidelberg [13] B Bede, S.G Gal (2005), Generalizations of the differentiability of fuzzynumber-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151, 581-599 [14] B Bede, L Stefanini (2013), Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230, 119-141 [15] A.M Bertone, R M Jafelice, L.C Barros and R.C Bassanezi (2013), On fuzzy solutions for partial differential equations, Fuzzy Sets Syst., 219, 68-80 [16] J Buckley and T Feuring (1999), Introduce to fuzzy partial differential equations, Fuzzy Sets Syst., 105, 241-248 [17] M.S Cecconello, J Leite, R.C Bassanezi (2017), Asymptotic analysis of continuous fuzzy flows, Comp Appl Math., 36, No.4, 1681 -1697 108 [18] M.S Cecconello, J Leite, R.C Bassanezi, A.J Brandão (2015), Invariant and attractor sets for fuzzy dynamical systems, Fuzzy Sets Syst., 265, 99-109 [19] M.S Cecconello, R.C Bassanezi, A.J Brandão, J Leite (2014), On the stability of fuzzy dynamical systems, Fuzzy Sets Syst., 248, 106-121 [20] P Diamond, P Kloeden (1994), Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore [21] P Diamond (2000), Stability and periodicity in fuzzy differential equations, IEEE Trans Fuzzy Syst., 8, No.5, 583-590 [22] P Diamond, P Kloeden (2000), Metric Topology of Fuzzy Numbers and Fuzzy Analysis In: Dubois D., Prade H (eds) Fundamentals of Fuzzy Sets The Handbooks of Fuzzy Sets Series, vol Springer, Boston, MA [23] Z Ding, A Kandel (1997), Existence and stability of fuzzy differential equations, J Fuzzy Math., 5, 681-697 [24] R Goetschel, W Voxman (1986), Elementary fuzzy calculus, Fuzzy Sets Syst., 18, 31 - 43 [25] L T Gomes, L C Barros, B Bede (2015), Fuzzy Differential Equations in Various Approaches, Springer, Cham [26] J K Hale (1977), Theory of Functional Differential Equations, SpringerVerlag, NewYork [27] N.V Hoa (2015) , Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun Nonlinear Sci Numer Simul., 22, No.1-3, 1134-1157 [28] M Hukuhara (1967), Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10, 205-223 109 [29] R M Jafelice, C Almeida, J.F.C.A Meyer, H.L Vasconcelo (2011), Fuzzy parameters in a partial differential equation model for population dispersal of leaf-cutting ants, Nonlinear Anal., 12, No.6, 3397-3412 [30] O Kaleva (1987), Fuzzy differential equations, Fuzzy Sets Syst., 24, 301317 [31] A Khastan, J.J Neito, R Rodríguez-López (2014), Fuzzy delay differential equations under generalized differentiability, Inf Sci., 275, 145 167 [32] A Khastan, J.J Nieto, R Rodríguez-López (2014), Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty, Fixed Point Theory Appl., 2014: 21, 16871812 [33] S Kikuchi and J Patamesvratan (1993), Use of fuzzy control for designing transportation schedule, Proc NAFIPS Meeting, Allentown, PA, 169-173 [34] A.A Kilbas, H.M Srivastava, J.J Trujillo (2006), Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam [35] G J Klir and B Yuan (1995), Fuzzy sets and fuzzy logic: theory and applications, Prentice-Hall, Inc Upper Saddle River, NJ, USA [36] Y Kuang (1993), Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston [37] V Lakshmikantham and R Mohapatra (2003), Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Publishers, London [38] H.V Long, N.T.K Son, N.T.M Ha, L.H Son (2014), The existence and uniqueness of fuzzy solutions for hyperbolic partial differential equations, Fuzzy Optim Decis Making, 13, No.4, 435-462 110 [39] V Lupulescu (2009), On a class of fuzzy functional differential equations, Fuzzy Sets Syst., 160, 1547 - 1562 [40] V Lupulescu and U Abbas (2012), Fuzzy delay differential equations, Fuzzy Optim Decis Mak., 11, No.1, 99-111 [41] M.T Malinowski (2015) , Random fuzzy fractional integral equations Theoretical foundations, Fuzzy Sets Syst., 265, 39-62 [42] M Mazandarani, A.V Kamyad (2013), Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun Nonlinear Sci Numer Simul., 18, No.1, 12-21 [43] M.T Mizukoshi, L.C Barros, R.C Bassanezi (2009), Stability of fuzzy dynamic systems, Int J Uncertainty, Fuzziness and Knowledge Based Syst., 17, No.1, 69-83 [44] C Negoita, D Ralescu (1975), Application of Fuzzy Sets to System Analysis, Wiley, New York [45] H T Nguyen (1978), A note on the extension principle for fuzzy sets, J Math Anal Appl., 64, No.2, 369 - 380 [46] J.J Nieto (1999), The Cauchy problem for continuous fuzzy differential equations, Fuzzy Sets Syst., 102, 259-262 [47] M Nikravesh, L.A Zadeh and V Korotkikh (2004), Fuzzy Partial Differential Equations and Relational Equations, Springer - Verlag, Berlin, Germany [48] M Obloza (1993), Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt Prace Mat., 13, 259-270 [49] B G Pachpatte (1998), Inequalities for Differential and Integral Equations, Academic Press, Inc., San Diego, CA 111 [50] L.M Puri and D Ralescu (1983), Differentials of fuzzy functions, J Math Anal Appl., 92, No.2, 552 - 558 [51] H Román-Flores, M Roas-Medar (2002), Embedding of level-continuous fuzzy sets on Banach spaces, Inf Sci., 144, No.1-4, 227-247 [52] S Salahshour, A Ahmadian, N Senu, D Baleanu, P Agarwal (2015), On analytical solutions of the fractional differential equation with uncertainty, Application to the Basset Problem, Entropy, 17, No.2, 885-902 [53] S Seikkala (1987), On the fuzzy initial value problem, Fuzzy Sets Syst., 24, 319-330 [54] Y Shen (2015), On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Sets Syst., 280, 27-57 [55] Y Shen, F Wang (2016), A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability, J Intell Fuzzy Syst., 30, No.6, 3253-3260 [56] L Stefanini (2010), A generalization of Hukuhara difference and division for interval and fuzzy arithmetric, Fuzzy Sets Syst., 161, 1564-1584 [57] L Stefanini, B Bede (2009), Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71, No.3-4, 1311-1328 [58] A Zada, O Shah, R Shah (2015), Hyers-Ulam stability of nonautonomous systems in terms of boundedness of Cauchy problems, Appl Math Comput., 271, 512-518 [59] L.A Zadeh (1965), Fuzzy sets, Information and Control, 8, No.3, 338-353 [60] L.A Zadeh (1975), The concept of linguistic variable and its application to approximate reasoning, Inf Sci., 8, No.3, 199-249 ... phương trình đạo hàm riêng mờ Một số quy trình tìm nghiệm mờ xấp xỉ đưa ví dụ minh họa cụ thể 14 • Đối tượng nghiên cứu luận án phương trình hyperbolic mờ có trễ phương trình đạo hàm riêng mờ. .. phương trình đạo hàm riêng mờ dạng hyperbolic" với mong muốn bước đầu góp phần xây dựng lý thuyết tốn học chặt chẽ nghiên cứu toán biên cho phương trình đạo hàm riêng có ẩn hàm nhận giá trị số mờ. .. tính giải tốn biên phương trình đạo hàm riêng mờ dạng hyperbolic bậc phân số miền bị chặn miền vơ hạn Chương Một số tính chất định tính nghiệm phương trình đạo hàm riêng mờ dạng hyperbolic bậc

Ngày đăng: 02/08/2018, 16:56

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan