1. Trang chủ
  2. » Luận Văn - Báo Cáo

skkn một số biện pháp rèn kỹ năng sơ đồ tóm tắt, phân tích tìm lời giải bài toán cho học sinh lớp 4

20 247 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 231 KB

Nội dung

Thông qua môn Toán học sinh được làm quen, được trang bị những hiểu biết về toán học, cụ thể là các kiến thức về số học, các phép tính, một số các yếu tố về đại lượng, hình học, đại số v

Trang 1

1 Mở đầu 1.1 Lý do chọn đề tài:

Trong các môn học ở trường Tiểu học hiện nay, mỗi môn đều có một

vị trí rất quan trọng Các môn học góp phần vào sự hình thành nhân cách của học sinh Cũng như các môn học khác, môn Toán có một vị trí quan trong đặc biệt trong đời sống con người Thông qua môn Toán học sinh được làm quen, được trang bị những hiểu biết về toán học, cụ thể là các kiến thức về

số học, các phép tính, một số các yếu tố về đại lượng, hình học, đại số và giải toán.Các yếu tố quan trọng đó có nhiều ứng dụng trong đời sống của trẻ sau này, cũng như trong học tập và lao động sản xuất

Môn Toán còn góp phần quan trọng trong việc rèn phương pháp suy luận, giải quyết các vấn đề có liên quan trong cuộc sống, phát triển trí thông minh, cách suy nghĩ độc lập sáng tạo, linh hoạt góp phần hình thành phẩm chất tốt cho học sinh như:cần cù, cẩn thận, sáng tạo

Vì vậy việc đổi mới phương pháp dạy học môn Toán là điều cấp thiết Qua thực trạng những năm công tác tại trường Tiểu học, tôi nhận thấy: những học sinh khá giỏi rất thích học Toán, nhưng với những em khả năng

tư duy kém thì lại rất ngại học Dẫn đến học sinh yếu kém về môn Toán chiếm tỉ lệ khá cao so với các môn học khác Trước thực trạng đó nhiệm vụ đặt ra cho ngành Giáo dục là phải nâng cao chất lượng dạy học Vì vậy ngoài việc học các môn học khác, giáo viên cần phải chú ý bồi dưỡng, nâng cao chất lượng dạy và học Song khi dạy về vấn đề này giáo viên chủ yếu dùng phương pháp giảng giải, vấn đáp: thầy hỏi, trò trả lời, chưa có sự sáng tạo, học sinh thụ động tiếp thu Bản thân tôi là một giáo viên Tiểu học, là một người đặt nền móng tri thức cho các em, tôi luôn trăn trở, suy nghĩ trong từng bài dạy, tiết dạy: "Dạy như thế nào để đem lại cho các em nhiều lợi ích thiết thực, nhất là những học sinh yếu trong quá trình học môn Toán " Không những dạy cho các em biết làm những phép tính cơ bản mà còn có thể giải các bài toán có lời văn, các bài toán hợp

Trong chương trình toán tiểu học sơ đồ tóm tắt không đơn thuần có

đề rồi mới tóm tắt mà có những bài cho sơ đồ tóm tắt yêu cầu học sinh đặt

đề toán rồi giải, đặt đề phù hợp với thực tế và đi đến giải đúng

Qua thực tế giảng dạy hiện nay tôi thấy kỹ năng sử dụng sơ đồ tóm tắt, phân tích tìm lời giải bài toán cho học sinh còn quá yếu.Vì vậy tôi xin

được mạnh dạn trình bày một sáng kiến kinh nghiệm nhỏ: “Một số biện pháp rèn kỹ năng sử dụng sơ đồ tóm tắt, phân tích tìm lời giải bài toán cho học sinh lớp 4 ở trường Tiểu học Trung Tiến” mà bản thân tôi đã rút

ra được từ thực tế giảng dạy nhằm nâng cao chất lượng và tăng hiệu quả giờ học môn To¸n

Trang 2

1.2 Mục đích nghiên cứu

- Nghiên cứu, tìm hiểu phương pháp về “sử dụng sơ đồ tóm tắt, phân tích tìm lời giải bài toán” cho học sinh lớp 4

- Nghiên cứu nguyên nhân học sinh thường mắc lỗi khi thực hiện sơ đồ tóm tắt, tìm lời giải bài toán

- Nghiên cứu xây dựng một số biện pháp tích cực nhằm giúp giáo viên và

học sinh khắc phục những khó khăn trong quá trình “sử dụng sơ đồ tóm tắt, phân tích tìm lời giải bài toán” ở học sinh lớp 4.

1.3 Đối tượng nghiên cứu:

- Các dạng bài toán giải có sử dụng sơ đồ tóm tắt

- Phương pháp “Sử dụng sơ đồ tóm tắt” khi thực hiện các bài toán giải

- Học sinh lớp 4 B - Khu chính - Trường Tiểu học Trung Tiến

1.4 Phương pháp nghiên cứu:

1.4.1 Nghiên cứu tài liệu

- Đọc tài liệu, sách báo, sách giáo khoa, sách giáo viên, sách tham khảo liên quan đến vấn đề “Sử dụng sơ đồ tóm tắt phân tích tìm lời giải bài toán” cho học sinh lớp

4

- Sách phương pháp dạy học môn Toán

1.4.2 Nghiên cứu thực tế

- Phương pháp điều tra, khảo sát thực tế, thu thập thông tin: Dự giờ, khảo sát chất lượng, trao đổi với đồng nghiệp, trao đổi với học sinh để tìm hiểu những khó khăn của các em trong quá trình học toán

- Phương pháp thực nghiệm kiểm tra: Tổ chức dạy học toán về “Sử dụng

sơ đồ tóm tắt phân tích tìm lời giải bài toán” cho học sinh lớp 4 B

Trang 3

2.Nội dung 2.1 Cơ sở lí luận

Trước đây có nhiều người cho rằng toán Tiểu học đơn giản và dễ dàng, nhưng cho đến nay nhiều bài toán Tiểu học nhiều phụ huynh phải đau đầu khó khăn lắm mới tìm ra cách giải Đúng là toán Tiểu học chẳng rễ chút nào đối với học sinh Tiểu học, tất cả đều mới mẻ với các em do vốn sống còn ít

Vì vậy việc hướng dẫn học sinh và bồi dưỡng cho các em có kỹ năng tóm tắt

đề tìm tòi lời giải là một việc không dễ Như chúng ta đã biết, đặc điểm tâm sinh lý của học sinh Tiểu học là tư duy cụ thể Chính vì vậy để giúp học sinh dễ hiểu nắm được cái đã cho, cái phải tìm, mối quan hệ giữa chúng để từ đó giải toán đúng cần hướng dẫn các em tóm tắt bằng sơ đồ đoạn thẳng Tuy nhiên không phải bất cứ bài toán( có lời văn) nào cũng phải tóm tắt bằng sơ đồ đoạn thẳng mà tóm tắt bằng lời lại dễ hiểu hơn.Nhưng trong nội dung toán Tiểu học thì việc tóm tắt bằng sơ đồ là chủ yếu đặc biệt với dạng toán giải của lớp 4 như thế mới phù hợp quy luật của nhận thức: Từ trực quan sinh động đến tư duy trừu tượng, tư duy trừu tượng trở về thực tiễn Mặc dù đội ngũ giáo viên có nhiều cố gắng trong việc cải tiến phương pháp dạy học, song nhìn chung phần lớn giáo viên vẫn còn dạy toán theo một hệ thống phương pháp hiện có (chủ yếu

là giảng giải và hỏi đáp )

2.2 Thực trạng việc “Sử dụng sơ đồ tóm tắt phân tích tìm lời giải bài toán” cho học sinh lớp 4 B ở trường Tiểu học.

Thực tế qua giảng dạy tôi thấy các em chưa ham học, sao nhãng việc học

hành, chất lượng môn toán còn thấp nguyên nhân là do:

* Nguyên nhân từ học sinh

- Một số em thực sự không thích học môn Toán, một là do mất căn bản ở lớp dưới, hai là các em ít khi đạt điểm cao ở dạng toán này

- Học sinh chưa có ý thức để nhận biết rõ tầm quan trọng của việc học, nên còn lười học, ít đọc sách tham khảo không quan tâm đến việc học và làm bài tập của mình

- Học sinh bị hổng kiến thức ngay từ các lớp dưới Khả năng tiếp thu bài còn chậm Không chịu học thuộc các công thức, quy tắc giải toán

- Hầu hết các em học sinh tiểu học còn hiếu động chưa có lòng kiên trì và quyết tâm cao, thấy khó là các em lùi bước

- Khi làm bài các em không đọc kĩ đề bài.Về nhà một số em chưa chuẩn

bị bài Hiện nay các trò chơi giải trí ngoài xã hội, trên ti vi khá hấp dẫn đã lôi kéo các em ham chơi khiến cho học sinh xao lãng việc học hành dẫn đến học yếu các môn nhất là môn Toán

- Một số em do chưa có phương pháp học tập đúng đắn ( Học vẹt, bắt

Trang 4

chước.

- Một số em do chưa có phương pháp học tập đúng đắn ( Học vẹt, bắt chước bài mẫu, sắp xếp thời gian chưa khoa học,hợp lí ….) nên càng ngày càng bị mất căn bản của môn Toán dẫn đến học yếu Không hiểu đề Toán dẫn đến không biết suy luận tìm dữ liệu Một số em do học yếu nên rất sợ học

- Mặc dù học sinh đã biết cách tóm tắt bài toán bằng sơ đồ đoạn thẳng từ lớp 3, song khi gặp các dạng toán có nhiều đại lượng, nhiều mối quan hệ hoặc những bài toán hợp, quan hệ giữa các yếu tố chưa tường minh, một số yếu tố đưa ra dưới dạng ẩn học sinh còn lúng túng

* Nguyên nhân từ giáo viên :

- Chưa kiểm tra nghiêm ngặt và liên tục các yêu cầu do mình đề ra

- Chưa nhiệt tình làm công tác phụ đạo học sinh yếu Toán

- Sử dụng phương pháp dạy học chưa phù hợp

- Một số giáo viên còn xem nhẹ phần tóm tắt các dạng toán giải có lời văn

- Giáo viên chưa chú ý đến những học sinh yếu không hiểu được đề toán, chưa biết dùng sơ đồ đoạn thẳng để tóm tắt và giải

- Thậm chí một số giáo viên “dạy bài nào, biết bài đó” không tính đến yếu

tố đồng tâm và tính tổng thể của một dạng toán, làm cho học sinh khó có thể

có được năng lực khái quát hoá và kỹ năng giải toán Nói cách khác là học sinh không có khả năng phát hiện, vận dụng yếu tố quen thuộc của bài toán này để giải bài toán dạng kia Ngoài ra một số giáo viên cũng chưa thật sự linh hoạt trong việc vận dụng các phương pháp dạy học, chưa thật sự chú trọng đến việc các em tự lập sơ đồ mà thường đưa ra sơ đồ cho học sinh giải toán

* Nguyên nhân từ phụ huynh học sinh.

- Đa số phụ huynh làm nghề nông, cuộc sống còn khó khăn, luôn bận bịu với công việc ít có thời gian quan tâm đến việc học của con cái, một số phụ huynh hạn chế về trình độ văn hoá nên gặp không ít khó khăn trong việc dạy học con khi ở nhà

- Một số gia đình còn giao việc dạy học con mình cho nhà trường và giáo viên chủ nhiệm Không quan tâm kiểm tra xem lực học của con như thế nào?

Vào đầu năm học, khi nhận lớp, tôi đã tiến hành khảo sát chất lượng và kết quả thu được như sau:

Tổng số

học sinh

Hoàn thành tốt Hoàn thành Chưa hoàn

thành

Qua bảng thống kê chất lượng trên cho thấy số lượng học sinh đạt yêu cầu rất thấp và số lượng học sinh chưa đạt yêu cầu lại còn rất nhiều

Trang 5

2.3 Các giải pháp sử dụng để giải quyết vấn đề

2.3.1 Xác định các dạng toán cần sử dụng PP dùng sơ đồ đoạn thẳng để giải.

- Tìm hiểu nội dung và điều kiện sơ đồ Cần có sự chuẩn bị trước bài dạy

đề có khả năng dẫn dắt học sinh hết các dấu hiệu một cách lô gíc

- Xác định mối quan hệ của các dạng toán và hệ thống kiến thức của các lớp trong bậc học để từ đó định hướng, dẫn dắt các em thực hành một cách

có hiệu quả về sử dụng sơ đồ đoạn thẳng trong giải toán

- Vận dụng linh hoạt các phương pháp và hình thức tổ chức dạy học như làm việc cá nhân, đàm thoại dẫn dắt, phiếu học tập, trao đổi nhóm,…để học sinh tự tìm ra cách vẽ sơ đồ, từ đó các em vận dụng sáng tạo vào việc giải các bài toán

Trong quá trình hướng dẫn học sinh cần tiến hành theo các bước sau:

Bước 1: Tìm hiểu đề toán (bước này câu hỏi giáo viên đặt ra rất quan trọng) Bước 2: Phân tích các điều kiện của bài toán, biểu diễn các đại lượng trên sơ

đồ đoạn thẳng

Bước 3: Dựa trên sơ đồ lập kế hoạch giải.

Bước 4: Thực hiện các thao tác giải đó là lời giải và phép tính

Bước 5: Kiểm tra đánh giá lời giải (thử lại kết quả)

Qua các bước đó học sinh cần đạt các yêu cầu về giải toán bằng sơ đồ đoạn thẳng:

Yêu cầu 1: Từ đề bài đã cho học sinh phải thiết lập được các mối liên hệ

và phụ thuộc giữa các đại lượng cho trong bài toán đó Muốn làm việc này

ta thường dùng các đoạn thẳng thay cho các số (số đã cho, số phải tìm trong bài toán ) để minh họa các quan hệ đó Ta phải chọn độ dài các đoạn thẳng

và cần sắp xếp các đoạn thẳng đó một cách thích hợp để có thể dễ dàng thấy được mối liên hệ và phụ thuộc giữa các đại lượng, tạo một hình ảnh cụ thể, giúp ta suy nghĩ tìm tòi cách giải bài toán

Yêu cầu 2: Học sinh biết phân tích, phán đoán suy luận nhanh có tư duy

lô gíc và cách khái quát cao

Yêu cầu 3: Rút ra được kinh nghiệm cho bản thân, diễn đạt được cách tìm ra các đại lượng Như chúng ta đã biết, chất lượng giải toán của học sinh phụ thuộc rất nhiều yếu tố trong đó vai trò của người giáo viên rất quan trọng Để từng bước nâng cao chất lượng học tập cho học sinh lớp mình tôi đã

có một số biện pháp sau đây:

2 . 3.2 Tạo cho HS thói quen tóm tắt bài toán và hướng dẫn học sinh thiết lập các mối liên hệ và phụ thuộc giữa các đại lượng cho trong bài toán - Vẽ sơ đồ tóm tắt.

Việc tóm tắt bài tóm là vô cùng cần thiết bởi khi học sinh biết tóm tắt tức Việc tóm tắt bài tóm là vô cùng cần thiết bởi khi học sinh biết tóm tắt tức

là học sinh đã nắm chắc đề bài thiết lập các mối quan hệ và phụ thuộc giữa

Trang 6

các đại lượng trong một bài toán Vì vậy khi gặp bài toán giải, giáo viên nên yêu cầu học sinh đọc kĩ đề và tự tóm tắt bài toán và nên tóm tắt bằng sơ đồ(đối với những bài toán có thể tóm tắt bằng sơ đồ) Khi phân tích một bài toán cần phải thiết lập được các mối liên hệ và phụ thuộc giữa các đại lượng cho trong bài toán Muốn làm được việc này người ta thường dùng đoạn thẳng thay cho các số ( số đã cho, số phải tìm trong bài toán ) Để minh hoạ các quan hệ đó ta phải chọn độ dài các đoạn thẳng, cần sắp xếp các đoạn thẳng đó một cách thích hợp để có thể dễ dàng thấy mỗi quan hệ và phụ thuộc giữa các đại lượng cho trong bài toán đó tạo một hình ảnh cụ thể giúp

ta suy nghĩ tìm tòi cách giải bài toán

2.3.3 Bồi dưỡng cho học sinh kĩ năng đặt lời giải đúng cho mỗi phép tính

Đặt lời giải cho đúng mỗi phép tính là việc làm khó đối với một số học sinh lớp 4, nhất là các học sinh chưa hoàn thành môn toán Để làm được việc này thì việc xác định cái đã cho và cái phải tìm và vô cùng quan trọng Hiện tượng “ cái đã biết” nhưng đến lúc giải các em lại cứ đi tìm “ cái đã biết” xảy ra không ít với học sinh nhất là học sinh chưa hoàn thành

* Ví dụ 1: Luyện tập chung/ sgk/ trang 139 Toán 4( bài 4)

Có một kho chứa xăng Lần đầu người ta lấy ra 32850 lít xăng, lần sau lấy ra bằng 3

1

lần đầu thì trong kho còn lại 56200 lít xăng Hỏi lúc đầu trong kho

có bao nhiêu lít xăng?

Có nhiều học sinh giải như sau:

Lần sau lấy ra bằng 3

1 lần đầu: 32850 x 3

1 = 10950 (l) Lúc đầu trong kho có tất cả là: 32850 - 10950 + 56200 = 100000 (l) Trong những trường hợp như thế này thường là học sinh chưa nắm rõ

“cái đã biết” và “cái phải tìm” và mối quan hệ giữa chúng Chính vì thế giáo viên phải chuẩn bị một số hệ thống câu hỏi, thông qua sơ đồ để giúp học sinh thấy được cái đã biết” và “cái phải tìm” và mối quan hệ giữa chúng để

từ đó tìm lời giải đúng cho từng phép tính của bài toán

*Ví dụ 2: Trong trường hợp các bài toán trên giáo viên có thể hướng dẫn như sau:

Bài toán cho biết gì? ( lần đầu người ta lấy ra 32850 l xăng, lần sau lấy ra bằng lần đầu thì trong kho còn lại 56200 l xăng)

Bài toán hỏi gì? ( lúc đầu trong kho có bao nhiêu l xăng?)

- Số xăng lấy ra lần sau đó biết bằng bao nhiêu l chưa?

- Vậy ta cần phải tìm số xăng lấy lần sau, em hãy tìm lời giải cho phép tính này? (Lần sau lấy ra số lít xăng là) Như vậy với hệ thống câu hỏi cụ thể

rõ ràng, học sinh có khả năng đặt lời giải đúng cho từng phép tính của bài toán

Trang 7

2.3.4 Hướng dẫn học sinh giải các dạng toán Trong chương trình Toán 4,

tôi thường vận dụng PP giải toán dùng “ Sơ đồ đoạn thẳng” để hướng dẫn

HS giải các dạng toán điển hình cụ thể như sau:

*Dạng 1: Tìm hai số khi biết tổng và hiệu

Khi dạy dạng Toán này giáo viên phải cho học sinh xác định được đâu là tổng của hai số ? Đâu là hiệu của hai số? Muốn vẽ được sơ đồ đoạn thẳng đúng thì phải tìm được tổng hai số đó và hiệu 2 số đó

Ví dụ 1: Bài toán 1: Cả hai lớp 4A và 4B trồng được 600 cây Lớp 4A trồng được ít hơn lớp 4B là 50 cây Hỏi mỗi lớp trồng được bao nhiêu cây?

Bước 1: Tìm hiểu đề toán

- HS đọc kĩ đề toán

- GV nêu câu hỏi giúp HS phân tích đề toán

+ Bài toán cho biết gì?

( Tổng số cây hai lớp trồng được 600 cây, biết lớp 4B trồng nhiều hơn lớp 4A là 50 cây)

+ Bài toán hỏi gì? ( Mỗi lớp trồng được bao nhiêu cây)

Bước 2: Phân tích điều kiện của bài toán biểu diễn các đại lượng trên sơ đồ đoạn thẳng

Nếu ta biểu diễn số cây của lớp 4A bằng một đoạn thẳng, thì số cây của lớp 4B là một đoạn thẳng dài hơn

Theo bài ra ta có sơ đồ:

? cây

Lớp 4A

Lớp 4B

? cây

Bước 3: Dựa trên sơ đồ lập kế hoạch giải

Bước 4: Giải bài toán

Bài giải Lớp 4A trồng được số cây là:

(600 – 50 ) : 2 = 275 ( cây ) Lớp 4B trồng được số cây là:

600 – 275 = 325 ( cây ) Đáp số: 4A: 275 cây

4B: 325 cây

Bước 5: Kiểm tra đánh giá lời giải ( thử lại )

235 + 275 = 600 cây

50 cây 600 cây

Trang 8

Khi dạy dạng Toán khó có bài người ta dấu tổng, dấu hiệu hoặc dấu cả tổng cả hiệu Muốn vẽ được sơ đồ đoạn thẳng đúng thì phải tìm được tổng hai số đó và hiệu 2 số đó

Ví dụ: Bài toán 2.( Sách toán nâng cao lớp 4)

Tổng của 3 số là 1999 Số thứ nhất lớn hơn tổng của hai số kia là

67 đơn vị Số thứ hai lớn hơn số thứ ba là 48 đơn vị Tìm 3 số đó

* Tìm hiểu và phân tích đề:

- Bài toán cho biết gì ?

+ Biết tổng 3 số là 1999.Số thứ nhất hơn tổng số thứ 2 và số thứ 3

là 67 đơn vị

+ Số thứ 2 hơn số thứ 3 là 48 đơn vị

- Bài toán yêu cầu gì?

+ Tìm 3 số đó? Học sinh đọc kĩ để tìm hiểu xem tổng của 3 số là mấy và hiệu của nó là đâu rồi giải bài toán

Bài giải

Từ bài toán ta có thể vẽ sơ đồ biểu thị quan hệ giữa số thứ nhất và tổng của hai số kia

?

Số thứ nhất:

Tổng của số thứ 2

và thứ 3: ?

Từ sơ đồ (1) ta có: Số thứ nhất là: 1033 2 67 1999   Tổng của số thứ 2 và thứ 3 là: 1033 - 67 = 966 Từ đó ta có sơ đồ thứ 2 biểu thị quan hệ giữa số thứ 2 và số thứ 3 như sau:

?

Số thứ 2: 48

Số thứ 3:

Từ sơ đồ (2) ta có:

Số thứ 2 là: (966+48) : 2 = 507

?

67 1999 (1)

Trang 9

Số thứ 3 là: 996 - 507 = 459

Đáp số: Ba số cần tìm là: 1033; 507; 459

Bước 5: Kiểm tra đánh giá lời giải ( thử lại )

Tổng 3 số: 1033 + 507 + 459 = 1999

*Dạng 2: Dạng tìm 2 số khi biết tổng và tỉ số của chúng

Ví dụ: Bài toán 1 ( toán 4 - Bài tập trang 90)

Hai kho chứa 125 tấn thóc, trong đó số thóc ở kho thứ nhất bằng 3/2

số thóc ở kho thứ hai Hỏi mỗi kho chứa bao nhiêu tấn thóc ?

* Tìm hiểu và phân tích đề

- Bài toán cho biết gì ?

+ Có 125 tấn thóc chứa trong 2 kho Trong đó kho thứ nhất bằng 3/2

số

thóc ở kho thứ hai

- Bài toán hỏi gì ?

Tìm số tấn thóc ở mỗi kho?

Từ đề ra của bài ta vẽ được sơ đồ:

? tấn

Kho thứ nhất:

Kho thứ hai:

? tấn

Bài giải Tổng số phần bằng nhau là 3+2 = 5 phần

Số thóc chứa ở kho thứ nhất ( số lớn)

(125 : 5) x 3 = 75 (tấn)

Số thóc chứa ở kho thứ hai ( số bé)

125 - 75 = 50 tấn

Đáp số: Kho thứ nhất: 75 tấn

Kho thứ hai: 50 tấn

* Kiểm tra đánh giá lời giải ( thử lại )

Tổng hai kho: 75 + 50 =125 tấn

Bài toán 2: Một xưởng may lúc đầu có số công nhân nữ bằng 32 số công nhân nam Sau đó 8 công nhân nam nghỉ việc nhà máy nhận thêm 15 công nhân nữ thì lúc này nhà máy có tổng số công nhân là 167 người Hỏi lúc đầu nhà máy có bao nhiêu công nhân nam, công nhân nữ?

Phân tích: Muốn tính được số công nhân nam, công nhân nữ thì cần phải tính số công nhân ở nhà máy lúc đầu, từ đó ta có lời giải:

Bài giải

125 tấn

Trang 10

Tổng số công nhân lúc đầu trong nhà máy là:

167 + 8 - 15 = 160 (công nhân)

Vẽ sơ đồ biểu thị số công nhân nam, nữ lúc đầu:

?CN

?CN

Bài giải Nhìn vào sơ đồ ta thấy 160 công nhân ứng với số phần là:

2 + 3 = 5 (phần)

Số công nhân nữ là:

160 : 5 x 2 = 64 (công nhân)

Số công nhân nam là:

160 - 64 = 96 (công nhân) Đáp số: 64 công nhân nữ

96 công nhân nam

*Dạng 3: Dạng tìm 2 số khi biết hiệu và tỉ số

- Tương tự ta căn cứ vào tỉ số của 2 số để chia các đoạn thẳng biểu diễn cho các số phải tìm bằng những phần bằng nhau Sau đó lấy hiệu chia cho hiệu số phần bằng nhau đó để tính giá trị một phần tiếp đó ta sẽ tìm được các giá trị của từng số theo yêu cầu của bài toán

Bài toán: Mẹ hơn con 25 tuổi Tuổi con bằng 72 tuổi mẹ Tính tuổi của mỗi người

* Tìm hiểu và phân tích đề

- Bài toán cho biết gì ?

+ Mẹ hơn con 25 tuổi Tuổi con bằng 72 tuổi mẹ

- Bài toán hỏi gì ?

+ Tính số tuổi mỗi người?

Từ đề ra của bài ta vẽ được sơ đồ

? tuổi

Con: 25tuổi

Mẹ:

? tuổi

Bài giải

160 CN

Số CN

nữ:

Số CN

nam:

Ngày đăng: 09/05/2018, 08:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w