TRƯỜNG TRUNG HỌC CƠ SỞ TRẦN VĂN ƠN QUẬN CÁC BÀI TẬP BỒI DƯỠNG HỌC SINH GIỎI MƠN: HÌNH TUẦN 11+12 Bài 1: Cho hình thang ABCD (AD // BC; AD > BC) có đường chéo AC BD vng góc với I Trên đáy AD lấy điểm M cho AM độ dài đường trung bình hình thang Chứng minh: ∆ACM cân Bài 2: Cho ∆ABC ( A = 90°; ACB = 30°) có đường cao AH Vẽ (Dựng) tam giác ACD (D B khác phía AC) Gọi K hình chiếu vng góc H AC Đường thẳng qua H song song với AD cắt AB kéo dài M Chứng minh: D, K, M thẳng hàng Bài 3: Cho ∆ABC Lấy điểm P thuộc miền ∆ABC cho PAC = PBC Gọi L M chân đường vng góc kẻ từ P đến BC AC Chứng minh: Nếu D trung điểm AB DL = DM Bài 4: : Cho hình thang ABCD (AB // CD) có A = D = 90° Gọi M trung điểm cạnh BC Chứng minh: ∆MAD cân Bài 5: Cho ∆ABC Gọi D trung điểm cạnh AB Trên cạnh BC lấy điểm E F cho BE = EF = FC Trên tia đối tia BA lấy điểm G cho BG = BD Chứng minh: Các đường thẳng AF, CD, GE đồng qui M Bài 6: Cho ∆ABC có đường trung tuyến BM = AC Trên tia đối AB lấy điểm D cho AB = AD Trên tia đối CM lấy điểm E cho CM = CE Chứng minh: DM vuông góc BE MƠN: ĐẠI TUẦN 11+12 Bài 1: Phân tích đa thức thành nhân tử: 1) (a − b) + (b − c) + (c − a) 2) a (b − 2c) + b (c − a) + 2c (a − b) + abc 3) x + 2009x + 2008x + 2009 4) x + y + z − 3xyz 5) (a + b + c) − a − b − c Bài 2: Tính: 1) A = (a + b − a b ) + 27a b biết a + b = ab 1 2) B = 2 biết a + b + c = abc ≠ + + b + c − a2 c2 + a2 − b2 a2 + b2 − c2 ab + bc + ca = 3) M = a + b + c biết a, b, c > a + b + c = (a − b) + (b − c) + (c − a) ( a + b)(b + c )(c + a ) 4) P = biết abc ≠ ab + bc + ca = abc 5) K = (a − b + 1) + (b − c − 1) + (c − a) biết abc ≠ 0; a + 2b − 3c = bc + 2ca − 3ab = Bài 3: Tìm a,b cho: 1) x + ax + b chia hết cho x − 2) x + ax + b chia cho x + dư 7; chia cho x − dư -5 3) x + ax + b chia hết cho x + x − Bài 4: Giải phương trình: 2− x 1− x x 1) −1 = − 2011 2012 2013 x x 2x 2) + = x − x + ( x − 3)( x + 1) ... − dư -5 3) x + ax + b chia hết cho x + x − Bài 4: Giải phương trình: 2− x 1− x x 1) −1 = − 2 011 2 012 2013 x x 2x 2) + = x − x + ( x − 3)( x + 1)