1. Trang chủ
  2. » Giáo Dục - Đào Tạo

hệ chất điểm mec2 ch4 he chat diem

29 70 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 385,65 KB

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Ch4 HỆ CHẤT ĐIỂM Trần Thị Ngọc Dung dungttn@gmail.com HCMUT NỘI DUNG • • • • • • • • • • • • Tâm tỉ cự ( Khối tâm) Momen động lượng Momen động lượng tâm tỉ cự Các định lý Koenig Động lực học tâm tỉ cự Định lý động lượng Định lý momen động lượng NC mặt lượng Thế Cơ Va chạm hai chất điểm Vật rắn quay xung quanh trục cố định Tâm tỉ cự ( Khối tâm) Định nghĩa M2 z m1 Xét hệ n chất điểm m1, m2… mi,…mn điểm m2 Mn mn G M1 M1, M2,… Mi, …, Mn O Khối tâm G hệ chất điểm xác định bởi:  m M G  i mi Mi y x i  m OM OG  m i i i i Tọa độ khối tâm i i OG  OM1  M1G OG  OM i  M i G (m1 )  rG  (m i )  m  i ri i m i i OG  OM n  M n G (m n ) m x  m i ( m i )OG   m i OM i   m i M i G i i i   xG i i i i m y  m i ; yG i i i i m z  m i i ; zG i i i Hệ khối lượng phân bố liên tục dm z  r  rG  x  i m G m x  m i i y (m)  dm (m) i xG   r dm i i  rG O  m  i ri i i   xdm (m)  dm (m) ; yG   ydm (m)  dm (m) ; zG   zdm (m)  dm (m) Example 8-1 Find the center of mass of a water molecule x cm  m x i i M i ; y cm  m y i i i M ycm  x cm  m H x H1  m H x H  mO x O m H  m H  mO xO  x H1  x H  9.6nmcos52.2  5.9nm x cm 1u  5.9nm  1u  5.9nm  16u  1u  1u  16u  0.66nm  Example 8-1 can also be solved by first finding the center of mass of just the two hydrogen atoms, the two H atoms replaced by a single particle of mass m1 + m2 =2u on the x axis at the center of mass of the original atoms The center of mass then falls between the oxygen atom at the origin and the calculated center of mass of the two hydrogen atoms The same technique enables us to calculate centers of mass for more complex systems, such as two uniform sticks The center of mass of each stick separately is at the center of the stick The center of mass of the system is found by treating each stick as a point particle at its individual center of mass Chuyển động khối tâm Vị trí khối tâm: Đh (1) theo thời gian, ta được: Đh (2) theo thời gian ta gia tốc Theo Đl Newton: Phân biệt: - Nội lực - Ngoại lực Lấy tổng (4) theo i Tổng nội lực Pt chuyển động khối tâm   m rG   m i ri (1) i   dr dr m G   mi i dt dt i   mv G   m i vi i   ma G   m i a i i  mai  Fi ( 2) (3)    mi a i  Fi,int  Fi,ext (4)    ma G   Fi,int   Fi,ext (5) i i   Fi,int  i  ma G   Fi,ext (6) i Động lượng hệ Bảo toàn Động lượng hệ   pi  mi vi    p   pi   mi vi i i   p  mv G Nếu tổng ngoại lực 0, động lượng hệ bảo toàn:   dp    p  const dt Định lý Động lượng hệ    dp  ma G  Fext dt  p2 t  2  dp   Fext dt  p1 (*) t1    t2  p  p  p1   Fext dt (**) t1 Nếu tổng ngoại lực khác 0, h/chiếu lên phương 0, có bảo toàn động lượng theo phương dp x  Fext ,x   p x  const dt Moment động lượng hệ   Li / O  OM i  mi vi    L / O   Li / O   OM i  m i vi i i   L   L / O e Định luật bảo toàn Moment động lượng Hệ  dL / O   M O / ext   dt  dL /    M  / ext   dt  L / O  const  L /   const Định lý Moment động lượng hệ     dL / O d OM i dv i   mi vi   OM i  m i   OM i  Fi dt dt dt i  i i  vi    dL / O   OM i  Fi ,int   OM i  Fi,ext dt i     i    dL / O dL /    M O / ext  M  / ext dt dt Độ biến thiên momen động lượng t2  t2    L / O   M O / ext dt L /    M  / ext dt xung lượng Moment lực tác dụng t1 t1 Hệ quy chiếu tâm tỉ cự R* R HQC NC, R* Là HQC gắn vào G chuyển động tịnh tiến đ/v HQC R Động lượng hệ HQC R* luôn * * p  mvG  Moment động lượng HQC tâm tỉ cự * * * L  LG  LO * * * L O   OM i  m i v i   (OG  GM i )  m i v i i i * *  OG   m i v i   GM i  m i v i i i            p*  * * * LO  LG  L L*G Định lý Động Động công suất Công nội lực d k  Pext  Pint dt  k  Wext  Wint r2 Wint   FAB dr Thế r1 Nội lực bảo toàn Nếu nội lực FAB tương tác chất điểm A, B hàm khoảng cách r, thi công Wint phụ thuộc vào r đầu cuối r2 Wint   FAB dr   P ,int (r1 )   P ,int (r2 ) r1 P,int (r ) Không phụ thuộc HQC   k (r   o ) VD A B nối với bẳng lò xo, ttác: P ,int  o Chiếu dài tự lò xo Thế toàn phần =thể nội lực + ngoai lực p  p,int  p,ext Cơ  M   K   p,int   p,ext Độ biến thiên công lực khơng bảo tồn M  Wnc Va chạm - Khi va chạm, hai vật tương tác với mạnh thời gian ngắn - Trong khoảng thời gian ngắn lúc va chạm, ngoại lực nhỏ lực tương tác vật Fext =0 - Động lượng hệ bảo toàn Phân loại: - Va chạm đàn hồi (động hệ bảo toàn) - Va chạm khơng đàn hồi (động hệ khơng bảo tồn) - Va chạm hồn tồn khơng đàn hồi (va chạm mềm sau va chạm vật gắn vào có vận tốc) Va chạm xuyên tâm: trước sau va chạm vectơ vận tốc thẳng hàng Va chạm xuyên tâm đàn hồi m1 v1 v2 m2 Trước va chạm • Bảo tồn động lượng hệ • BẢo tồn động hệ • Pt(6) : vận tốc tương đối vật trước sau chạm có độ lớn • Từ (2), (5) , vận tốc vật sau va chạm V’1 m1 m2 Sau va chạm     m1v1  m v  m1v'1  m v'2     m1 ( v1  v'1 )  m ( v'2  v (2) V’2 (1) 2 2   m1v1  m v  m1v1  m v2 2 2     m1 ( v12  v1 )  m ( v2  v 22 ) ( 4)     v1  v'1  v'2  v (5)     ( v1  v )  ( v'1  v'2 ) (6)    (m1  m ) v1  2m v v1  m1  m    (m  m1 ) v  2m1v1 v2  m1  m (3) Vachạm hồn tồn khơng đàn hồi m1 v1 V v2 m2 Before collision Bảo toàn động lượng m1 m2 After collision    m1v1  m v  (m1  m )V (1)  m1v1  m v V (2) m1  m Sau va chạm vật gắn vào có  k   k ,sau_vch   k ,truoc_vch vận tốc 1 2  (m1  m )V  ( m1v1  m v 22 ) 2 m1m   Độ biến thiên động ( v1  v ) m1  m HQC Khối tâm • Khi tổng ngoại lực 0, vận tốc khối tâm vectơ   ma G  Fext    Fext   a G   v G  const    rG  v G t  rG ( t  0) • Trong HQC khối tâm, vận tốc khối tâm =0 • HQC khối tâm gọi HQC có động lượng =0 * * p  mv G * * v G   p  Khảo sát va chạm HQC tâm tỉ cự R* Trong R*, động lượng hệ =0 Va chạm đàn hồi, động hệ bảo toàn * * *  *  * * *  *  * p   p1  p  p'1  p'2 (1)  p1  p ; p'1  p'2  *2  *2  *2  *2  *2  *2  *2  *2 p p p ' p '2 * K      p1  p  p'1  p'2 2m1 2m 2m1 2m  *2  *2 *  * p1  p'1  v1  v'1  *2  *2 *  * p  p'2  v  v'2 Trong HQC R*, độ lớn động lượng hạt trước sau va chạm bẳng nhau: * *  *  * p1  p  p'1  p'2 Nếu va chạm hoàn toàn đàn hồi, độ lớn vận tốc hạt trước sau va chạm *  * v1  v'1 ; *  * v  v '2 Khảo sát toán va chạm HQC R* Khảo sát toán va chạm HQC R* đơn giản Trong R*, động lượng hạt tới độ lớn ngược chiều T/h Va chạm hoàn toàn đàn hồi, sau va chạm vận tốc vật ngược chiều lại, có độ lớn khơng đổi T/h Va chạm hồn tồn khơng đàn hồi ( va chạm mềm), sau va chạm, vật dừng lại Mọi lượng ban đầu biến thành nhiệt  v1 m1 G  vG * v1  v2 m2 HQC ban đầu R Va chạm mềm * v2 G * vG  m1 m2 HQC R* Va chạm hòan tồn đàn hồi    m1v1  m v vG  m1  m *   v1  v1  vG *   v  v  vG Sau va chạm Sau va chạm * * v'1  v'2     v1  v  v G *  '* v1   v1 *  '* v2  v2  '  '*  v1  v1  vG  '  '*  v  v  vG 6/118 Va chạm đàn hồi trực diện Hai hạt m1, m2 chịu va chạm đàn hồi trực diện Tìm biểu thức vận tốc sau va chạm cách sử dụng HQC tâm tỉ cự    m1v1  m v vG  m1  m     *    m1v1  m v m ( v1  v ) v1  v1  v G  v1   m1  m m1  m     *   m v  m v m ( v  1 2  v1 ) v  v  vG  v   m1  m m1  m     m (v  v2 ) v'1*   v1*   m1  m     m (v  v ) v'*2   v*2   m1  m       '  *  m ( v1  v ) m1v1  m v (m1  m ) v1  2m v v1  v'1  v G     m1  m m1  m m1  m       '  *  m1 ( v  v1 ) m1v1  m v (m  m1 ) v  2m1v1 v  v '2  v G     m1  m m1  m m1  m 20* Ngưỡng lượng Khi vật A bị phá vỡ thành mảnh, công lực liên két giá trị tuyệt đối Wo Vật A, khối lượng mA đứng yên, bị vật B có khối lượng mB, có động K va phải Hãy xác định gía trị nhỏ K cần để làm vỡ A Đề nghị: dùng HQC tâm tỉ cự Động *K nhỏ sau va chạm, 2mảnh +B đứng yên HQC R*, Động sau va chạm ’*K =0,  *2  *2 *   m v  m v K A A B B => Để phá A, *K >Wo 2 Tìm *K 2       mBvB mA vB      m  m A B  *2  *2  * K  m A vA  m B vB  mA  mB   mA  mB  2     m m ( m  m ) v A B B A B  mBvB    vG  m  m B   A mA  mB  mAmB  mA *   mBvB  vB   K  Wo v A  v A  vG   mB  mA mB  mA mA  mB   *    mBvB mA vB v B  v B  vG  v B   mA  mB mA  mB  mB    K  Wo 1   mA  Trong HQC R, động cực tiểu sau va chạm vật có vận tốc V=VG  K  'K  Wo 'K  (m A  m B ) v G2  mBvB    (m A  m B )  mA  mB  mB mB ( ) mBvB  ( ) K mA  mB mA  mB mB K   K  Wo mA  mB mA  mB mB K  Wo  Wo (1  ) mA mA AD /98 Sự trượt Hai chất điểm M1, M2 có khối lượng m, buộc vào 2đầu dây lý tưởng dài  Trượt không ma sát mp nằm ngang (xOy) Ở thời điểm ban đầu, chúng có vị trí M1o (,0), M 2o (0,0)   Một va chạm truyền cho cho M1 vận tốc ban đầu vo  vo e y Vận tốc M2 Khảo sát chuyển động M2 tính lực căng dây: x M1o   vo  vo e y G M20 y M1o  x  vo  vo e y   m1v o  vG   vo ey m1  m 2 er  x G   /   rG   y   G v o t e G T y OM  OG  GM M20 Trong HQC tâm tỉ cự R*, vật thực chuyển động quay, lực tác dụng xuyên tâm G, momen động lượng bảo toàn *       L  GM1  m  e1  GM  m  e2  2m   ez  const 2 2 *    L ( t  0)  2m  ( t  0)ez 2  *   vo   v v1  v1  v G  e y  ( t  0)e1( t 0)    o 2  *    v o  mv o  L  m  ez  ez    v   o  const   *    vo  x   cos    cos  t     GM    y*    sin     sin  v o t   2       T  ma  m er 2 vo2 Tm 2 M1o  x  vo  vo e y   m1v o  vG   vo ey m1  m 2 er  x G   /   rG   y   G v o t e G T y M20 OM  OG  GM Trong HQC tâm tỉ cự R*, vật thực chuyển động quay, lực tác dụng xuyên tâm G, momen động lượng bảo toàn v   o  const   *    vo  x   cos    cos  t     GM    y*    sin     sin  v o t   2       T  ma  m er 2 vo2 Tm 2 ... chạm hai chất điểm Vật rắn quay xung quanh trục cố định Tâm tỉ cự ( Khối tâm) Định nghĩa M2 z m1 Xét hệ n chất điểm m1, m2… mi,…mn điểm m2 Mn mn G M1 M1, M2,… Mi, …, Mn O Khối tâm G hệ chất điểm. .. finding the center of mass of just the two hydrogen atoms, the two H atoms replaced by a single particle of mass m1 + m2 =2u on the x axis at the center of mass of the original atoms The center... of the original atoms The center of mass then falls between the oxygen atom at the origin and the calculated center of mass of the two hydrogen atoms The same technique enables us to calculate

Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN

w