vật lí đại cương - hệ chất điểm tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả các lĩnh...
Trang 1Hệ chất ñiểm
Lê Quang Nguyên www4.hcmut.edu.vn/~leqnguyen nguyenquangle59@yahoo.com
Nội dung
1 Khối tâm
2 Định luật 2 Newton cho hệ chất ñiểm
3 Momen ñộng lượng
1a Chuyển ñộng của hệ chất ñiểm
• Cho ñến nay chúng ta chỉ mới xét chuyển ñộng của
các hệ có thể coi là chất ñiểm
• Chuyển ñộng của các vật thể lớn hay hệ chất ñiểm
thường phức tạp hơn
• Ví dụ 1: cây thước
• Ví dụ 2: vận ñộng viên vượt rào
Chuyển ñộng của mỏ lết
1b Khối tâm
• Thử xem lại các ví dụ vừa rồi: cây thước, vận ñộng viên vượt rào
• Với mỗi hệ ta có thể ñịnh một vị trí có chuyển
ñộng tuân theo ñịnh luật 2 Newton: khối tâm của
hệ
• Khối tâm (CM) có vị trí:
• M là khối lượng hệ, tổng ñược lấy trên tất cả các chất ñiểm có khối lượng m i và vị trí r i của hệ
∑
=
i i i
M
Trang 21c Bài tập 1.1
• Một hệ gồm ba chất
ñiểm có vị trí như trên
hình vẽ, với m1 = m2 =
1,0 kg và m3 = 2,0 kg
• Hãy tìm khối tâm của
hệ
1.c Trả lời bài tập 1.1
• Tọa ñộ của khối tâm:
• Thay bằng số ta ñược:
3 2 1
3 3 2 2 1 1
m m m
x m x m x m
x CM
+ +
+ +
=
3 2 1
3 3 2 2 1 1
m m m
y m y m y m
y CM
+ +
+ +
=
( )
0,75
CM
+ +
( )
1,0
CM
+ +
rCM
1d Bài tập 1.2
• Hãy chứng tỏ rằng khối tâm của một thanh có
khối lượng M và chiều dài L nằm ở trung ñiểm
của nó Giả sử khối lượng trên một ñơn vị dài của
thanh là hằng số
1.d Trả lời bài tập 1.2
• Chọn trục x theo chiều
dài thanh Đoạn vi phân
dx ở vị trí x có
• khối lượng dm = λdx.
• λ là khối lượng trên một
ñơn vị dài
• Khối tâm có tọa ñộ cho bởi:
∫
M
x
dx
Trang 31.d Trả lời bài tập 1.2 (tt)
• Suy ra:
• trong ñó λ/M = 1/L
• Tích phân trên cho ta:
∫
=
L L
L
xdx M
x
0 0
1
λ
[ ]
2 2
1
0
x L
1e Bài tập 1.3
• Xét một thanh không ñồng nhất, có khối lượng
trên một ñơn vị dài thay ñổi theo vị trí x: λ = αx,
α là hằng số Tìm vị trí khối tâm theo chiều dài L
của thanh
1.e Trả lời bài tập 1.3
• Làm tương tự như bài tập 1.2 ta có:
• Tích phân cho ta:
∫
=
L L
M dx x M
x
0
2 0
[ ]
M
L x
M
3 3
3 0
=
1.e Trả lời bài tập 1.3 (tt)
• Khối lượng của thanh ñược xác ñịnh bởi:
• Thay thế biểu thức của λ ta có:
• Do ñó:
∫
[ ]
2 2
2 0
2 0
L x
xdx
L
α α
L M
L
x CM
3
2 3
3
=
=α
Trang 42a Động lượng của hệ chất ñiểm
• Lấy ñạo hàm vị trí khối tâm theo thời gian, ta
ñược vận tốc khối tâm:
• Hay:
• Động lượng của hệ bằng ñộng lượng của một chất
ñiểm có khối lượng bằng khối lượng của hệ M,
chuyển ñộng với vận tốc khối tâm v CM
∑
=
i
i i
i i
M v m M
P p v
M
i i CM
≡
=∑
2b Định luật 2 Newton cho hệ chất ñiểm
• Đạo hàm vận tốc khối tâm theo thời gian:
• trong ñó ta ñã dùng ñịnh luật 2 Newton cho từng chất ñiểm
• Suy ra:
• Khi F tot = 0, ñộng lượng của hệ bảo toàn, do ñó khối tâm chuyển ñộng thẳng ñều
dt
P d dt
p d a
M
i
i CM
=
i
i tot
dp F
dt =
tot
dP F
dt =
F tot là tổng ngoại lực
tác ñộng lên hệ
2c Chuyển ñộng của khối tâm
• Ta có thể viết:
• Khối tâm của một hệ có khối lượng M chuyển
ñộng như một chất ñiểm thực khối lượng M dưới
tác ñộng của tổng ngoại lực tác ñộng lên hệ
• Khối tâm của cây thước
• Khối tâm của vñv vượt rào
Ma = F
2d Bài tập 2.1
• Mộ tên lửa nổ tung thành nhiều mảnh trên không
• Tìm quỹ ñạo khối tâm của các mảnh vỡ sau khi nổ
Trang 52d Trả lời bài tập 2.1
• Trước khi nổ tên lửa chuyển
ñộng như một chất ñiểm, có
quỹ ñạo là một parabol
• Gia tốc của khối tâm sau khi
nổ thỏa phương trình:
• Lực toàn phần tác ñộng lên
hệ vẫn là trọng lực Mg.
• Suy ra: a CM = g.
• Do ñó khối tâm vẫn chuyển
ñộng theo quỹ ñạo parabol
Ma = F
2e Bài tập 2.2
• Hai xe trượt trên ñệm khí ñến va chạm nhau
• (a) Tìm vận tốc của chúng sau va chạm
• (b) Tìm vận tốc khối tâm của hệ hai xe trước và sau va chạm
2e Trả lời bài tập 2.2(a)
• Lực toàn phần trên phương ngang bằng không, do
ñó ñộng lượng trên phương ngang ñược bảo toàn
• Trên trục x hướng sang phải ta có:
• Công toàn phần tác ñộng lên hệ bằng không, do
ñó ñộng năng hệ cũng bảo toàn:
• Giải hệ ta ñược: v1 = 0,18, v2 = 1,18 m/s
• Minh họa
2 2 1 1
1v m v m v
2 2 2 2 1 2 1 1 2
1
2
1
2
1 v 0,7v
∆K hệ= tổng công của các lực tác ñộng lên hệ
2e Trả lời bài tập 2.2(b)
• Vận tốc khối tâm ñược xác ñịnh bởi:
• Vì ñộng lượng của hệ nằm ngang nên chiếu lên
trục x ta ñược:
• Trước va chạm:
• Vì ñộng lượng ñược bảo toàn nên sau va chạm vận tốc khối tâm không thay ñổi
P v
M CM
=
P
Mv CM =
Trang 62f Bài tập 2.3
• Hai vật khối lượng M và 3M
ñược ñặt trên một mặt phẳng
ngang không ma sát như
hình vẽ Sau khi ñốt sợi dây
giữa hai vật, vật 3M chuyển
ñộng sang phải với vận tốc
2,00 m/s
• (a) Tìm vận tốc của vật M ?
• (b) Tìm thế năng ñàn hồi
ban ñầu của lò xo, cho biết
M = 0,350 kg.
2f Trả lời bài tập 2.3(a)
• Vì lực toàn phần trên phương ngang bằng không
nên ñộng lượng của hệ trên x ñược bảo toàn:
• Nếu chọn trục x hướng sang phải thì:
• Cơ năng của hệ cũng ñược bảo toàn vì không có
ma sát:
• Ta có:
2 1
3
P
(m s) (m s)
v
v2 =−3 1 =−3×2 / =−6 /
(K U g U s)
2 1
2 2
2
2
1 2
3
Mv Mv
Mv K
∆
2f Trả lời bài tập 2.3(b)
• Suy ra:
• Theo trên, thế năng ñàn hồi ban ñầu của lò xo ñã
chuyển hoàn toàn thành ñộng năng của hệ
• Nếu có ma sát thì chỉ một phần của năng lượng
này chuyển thành ñộng năng
0
=
∆U g
i
2 1
( )
2 1
i
s
3a Momen ñộng lượng của chất ñiểm
• Momen ñộng lượng của một chất ñiểm ñối với gốc O là:
• L có ñộ lớn:
• phương vuông góc với mặt
phẳng (r, p).
• chiều cho bởi quy tắc bàn tay phải
• L ñặc trưng cho chuyển ñộng
quay
p r
×
=
x
y z
r
p L
φ
sin
Trang 73b Bài tập 3.1
• Một chất ñiểm chuyển
ñộng trong mặt phẳng xy
trên một ñường tròn bán
kính r tâm O
• Tìm ñộ lớn và chiều
momen ñộng của chất
ñiểm ñối với tâm O, nếu
vận tốc chất ñiểm là v.
3b Trả lời bài tập 3.1
• L vuông góc mặt phẳng xy
và hướng theo chiều dương
trục z (hình vẽ).
• Trong chuyển ñộng tròn ñộng lượng vuông góc với vectơ vị trí, do ñó ta có:
x
y z
r
p L
φ
rmv rp
rp
3c Momen lực
• Momen của một lực ñối với
gốc O ñược ñịnh nghĩa bởi:
• τ có ñộ lớn:
• phương vuông góc mặt
phẳng (r, p).
• và chiều xác ñịnh bởi quy tắc
bàn tay phải
• τ ñặc trưng cho chuyển ñộng
quay
F
r
×
=
τ
x
y z
r
F τ
φ
ϕ
τ =rFsin
3c Bài tập 3.2
• Một con lắc gồm một vật khối
lượng m chuyển ñộng trên một
quỹ ñạo tròn nằm ngang Trong suốt chuyển ñộng dây treo
chiều dài l hợp một góc không ñổi θ với phương thẳng ñứng.
• Tìm momen của trọng lực ñối với ñiểm treo O
O
Trang 83c Trả lời bài tập 3.2
• Momen của trọng lực vuông
góc với mặt phẳng tạo bởi dây
treo và phương thẳng ñứng
(mặt phẳng hình vẽ), và hướng
vào trong
• τ có ñộ lớn:
O
r
mg
θ
θ
τ =lmgsin
r
mg
θ
x τ
3e Định lý momen ñộng
• Định luật 2 Newton:
• Nhân hữu hướng hai vế với r:
• Ta có:
• Suy ra:
dt p d
=
dt
p d r F r
×
=
×
dt
p d r dt
p d r p dt
r d p r dt
×
=
× +
×
=
×
= 0
dt
p r d F r
dt
L d
=
τ
3e Định lý momen ñộng (tt)
• Đối với hệ chất ñiểm ta có:
• τext là momen toàn phần của các ngoại lực tác
ñộng lên hệ
• Minh họa: bánh xe quay, con quay
• Khi tổng momen ngoại lực bằng không thì
momen ñộng của hệ ñược bảo toàn
ext
dL
dt
τ =
3f Bài tập 3.3
• Xét một cái cân ở trạng thái cân bằng (hình vẽ)
• Nếu vật nặng 5 N, WP = 45,7 cm và PS = 51,4
cm, hãy tìm chỉ số của lực kế lò xo
Trang 93f Trả lời bài tập 3.3
• Hệ cân bằng ñối với ñiểm tựa P nên momen ngoại
lực toàn phần ñối với P phải bằng không
• Momen của T1 hướng ra ngoài
• Momen của T2 thì hướng vào trong
T1= Mg
r1
T2
r2
T1
r1 •
τ1
3f Trả lời bài tập 3.3 (tt)
• Để chúng khử lẫn nhau ta phải có:
• Chỉ số của lực kế, hay ñộ lớn lực T2, là:
• Minh họa
2
1 τ
τ =
2 2
1Mg r T
Mg r
r T
2
1
2 =
2
45,7
51, 4
3g Bài tập 3.4
• Một con lắc gồm một vật khối
lượng m chuyển ñộng trên một
quỹ ñạo tròn nằm ngang Trong
suốt chuyển ñộng dây treo
chiều dài l hợp một góc không
ñổi θ với phương thẳng ñứng.
• Hãy chứng tỏ rằng momen
ñộng của vật ñối với tâm vòng
tròn O có ñộ lớn cho bởi:
2 / 1 4 3 2
cos
sin
=
θ
θ
gl
m
L
O
3g Trả lời bài tập 3.4
• Ở vị trí ñang xét ñộng lượng của vật vuông góc với mặt phẳng hình vẽ Giả sử nó hướng vào trong
• L hướng thẳng ñứng lên trên.
• và có ñộ lớn:
L
x
p
r
L
rmv
L =
Trang 103g Trả lời bài tập 3.4 (tt)
• Dùng ñịnh luật 2 Newton
trên phương x và y:
• lập tỷ số ta ñược:
• Suy ra:
• Ta có:
x y
T
mg
θ
θ
sin /
2
T r
θ
cos
T
mg =
θ
tan
rg
v =
θ
tan
2 3
g m
r
L =
θ
sin
l
r =
θ
θ
cos
sin4
3 2
gl m
L =
⇒