Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 57 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
57
Dung lượng
669,44 KB
Nội dung
LỜI CẢM ƠN Trong suốt q trình thực khóa luận tốt nghiệp cố gắng thân, em nhận quan tâm, giúp đỡ tận tình thầy giáo, giáo bạn sinh viên Em xin gửi lời cảm ơn đến: Trường ĐHSP Hà Nội Các thầy giáo, cô giáo khoa Vậtlý nói chung tổ vậtlýlý thuyết nói riêng tạo điều kiện thuận lợi giúp em hồn thành khóa luận Đặc biệt em xin bày tỏ lòng biết ơn chân thành tới giáo viên hướng dẫn TS Phạm Thị Minh Hạnh người trực tiếp tận tình bảo suốt quãng thời gian em thực hồn thành khóa luận Trong trình nghiên cứu, thân sinh viên bước đầu tập làm quen với việc nghiêncứu đề tài khoa học nên khóa luận em khơng tránh khỏi thiếu sót Để khóa luận hồn thiện em mong nhận ý kiến góp ý quý thầy cô bạn Em xin chân thành cảm ơn! Hà Nội, tháng năm 2013 Sinh viện thực Đỗ Thị Huyền Trang LỜI CAM ĐOAN Em xin cam đoan kết nghiêncứu khoa học riêng em dựa cở sở kiến thức học tham khảo tài liệu liên quan với hướng dẫn giúp đỡ giảng viên TS Phạm Thị Minh Hạnh Nó khơng trùng với kết nghiêncứu tác giả Các kết nêu luận văn trung thực Hà Nội, tháng năm 2013 Sinh viên thực Đỗ Thị Huyền Trang MỤC LỤC MỞ ĐẦU 1 Lý chọn đề tài: Mục đích nghiêncứu Nhiệm vụ nghiêncứu Đối tượng nghiêncứu Phạm vi nghiêncứu Phương pháp nghiêncứu NỘI DUNG CHƯƠNG1: CẤU TRÚC CỦA CÁC BÁNDẪN CÓ DẠNG TINH THỂ 1.1 Mạng tinh thể 1.1.1 Mạng Bravais 1.1.2 Mạng đảo CHƯƠNG 2: MỘTSỐTÍNHCHẤTVẬTLÝCỦABÁNDẪN KHỐI 11 2.1 Các khái niệm sở 11 2.1.1 Sơ lược tínhchấtbándẫn 11 2.1.2 Tínhchất điện bándẫn 12 2.1.2.1 Tínhchất điện bándẫntinh khiết 12 2.1.2.2 Tínhchất điện bándẫn tạp chất 16 2.1.3 Hiệu ứng Hall bándẫn 25 2.2 Tínhchất quang bándẫn 31 2.2.1 Hệ thức tán sắc bándẫn 31 2.2.2 Hệ số hấp thụ 34 2.2.2.1 Hệ số hấp thụ điện tử chất điện môi 34 2.2.2.2 Hệ số hấp thụ điện tử chấtbándẫn 35 KẾT LUẬN 39 TÀI LIỆU THAM KHẢO 40 MỞ ĐẦU Lý chọn đề tài Nền khoa học công nghệ giới phát triển cách nhanh chóng nước phát triển Hoa Kỳ, Nhật Bản, Nga Sự phát triển khoa học công nghệ đem lại diện mạo cho sống người công nghệ điện tử viễn thông Hiện giới hình thành khoa học cơng nghệ mới, có nhiều triển vọng dự đốn có tác động mạnh mẽ đến tất lĩnh vực khoa học, công nghệ, kỹ thuật đời sống kinh tế - xã hội kỷ 21 Đó lĩnh vực nghiêncứunghiêncứu ứng dụng phát triển chấtbándẫn Thật vậy, việc nghiêncứu ứng dụng phát triển chấtbándẫn vô quan trọng sống phát triển ngành khoa học kỹ thuật điện tử Điều chứng minh Cơng trình nghiêncứuchấtbándẫn nhóm nhà khoa học người Mỹ giành giải Nobel vào năm 1956, cho phát minh ấn tượng nằm số top 10 phát minh khoa học quan trọng lịch sử nhân loại Loại vật liệu bándẫn từ đời ứng dụng rộng rãi nhiều lĩnh vực chế tạo loại thiết bị bên máy móc ti vi, máy tính chip bándẫn điện thoại… điều chứng tỏ ứng dụng tuyệt vời chấtbándẫn Tìm hiểu sốtínhchấtbándẫn nói chung tínhchấtvậtlý nói riêng bándẫn cung cấp cho số kiến thức vật liệu bándẫn Từ giúp có nhìn tổng quan vật liệu bándẫn Đó lí em định chọn đề tài này: “Nghiên cứusốtínhchấtvậtlýbándẫn ” Mục đích nghiêncứu - Nghiêncứusốtínhchấtvậtlýbándẫn Nhiệm vụ nghiêncứu - Nghiêncứu cấu trúc bándẫn - Nghiêncứusốtínhchấtvậtlýbándẫn khối Đối tượng nghiêncứu - Bándẫn khối Phạm vi nghiêncứu - Tínhchấtvậtlýbándẫn khối Phương pháp nghiêncứu - Thu thập tài liệu mạng, số sách - Tổng hợp, xử lý, khái quát, phân tích tài liệu thu - Nghiêncứulý thuyết, sởlý luận NỘI DUNG CHƯƠNG1: CẤU TRÚC CỦA CÁC BÁNDẪN CÓ DẠNG TINH THỂ 1.1 Mạng tinh thể 1.1.1 Mạng Bravais 1.1.1.1 Nhóm tịnh tiến tinh thể Hình 1.1: Sự xếp nguyên tử loại mạng tinh thể hai chiều Ta việc nghiêncứutính đối xứng (bất biến) tinh thể nhóm tịnh tiến Phép chuyển động vật rắn mà điểm r chuyển thành điểm r R gọi phép tịnh tiến đoạn R , ký hiệu T (R) Ta viết tắt phép tịnh tiến sau: T (R) : r r R ; với r Ta nói rằng, tinh thể có tính đối xứng với phép tịnh tiến đoạn e theo hướng trục 0 , nghĩa T e phép tịnh tiến nguyên tử dời chỗ đến vị trí nguyên tử khác loại, tinh thể sau dịch chuyển sang vị trí trùng khít với vị trí cũ Hình 1.1 diễn tả thí dụ xếp nguyên tử loại mạng tinh thể hai chiều Ta nói tinh thể mơ tả có tínhchất tuần hồn theo hướng 0α Mọi tinh thể không gian ba chiều có tính bất biến (đối xứng) phép tịnh tiến theo ba hướng T e ,T e ,T e Oα, Oβ, Oγ, nghĩa có tính tuần hồn theo hướng Trong tinh thể chọn hướng khác nhiều cách khác (xem hình 1.2 với tinh thể chiều) e , e ,e Vì tinh thể gián đoạn số tất vectơ a1 , a2 , a3 theo hướng tuần hoàn tinh thể có vectơ ngắn Hình 1.2: Tinh thể hai chiều e n1 a1,e n2 a2 ,e n3 a3 , với n1, n2, n3 số ngun Tinh thể có tính đối xứng (bất biến) tất phép tịnh tiến T R mà: R n1 a1 n2 a2 n3 a3 (1.1) Các phép tịnh tiến tạo thành nhóm, gọi nhóm tịnh tiến, với quy tắc nhân sau đây: T R1 T R2 T R1 R2 1.1.1.2 Định nghĩa mạng Bravais Tập hợp tất điểm có vecto bán kính R xác định cơng thức (1.1) tạo thành mạng không gian gọi mạng Bravais Mỗi điểm gọi nút mạng Các vecto m ng Bravais a1 , a2 , a3 gọi vecto sở Bộ ba vecto a1 , a2 , a3 1.1.1.3 Ô sở gọi vecto sở, chiều dài chúng gọi số mạng Hình hộp tạo vecto sở gọi ô đơn vị hay ô sở Ơ sở thể tích khơng gian có tínhchất sau : a Khi thực tất phép tịnh tiến tạo thành mạng Bravais, nghĩa tất phép tịnh tiến có dạng (1.1), tập hợp tất ô thu từ ô ban đầu lấp đầy tồn khơng gian, khơng để lại khoảng trống b Hai ô khác có điểm chung nằm mặt phân cách chúng c Ơ sở tích: VC a1.a2 a3 (1.2) 1.1.1.4 Ơ ngun tố Wigner- Seitz Có nhiều cách chọn ô sở Các ô sở mà nút mạng nằm đỉnh hình hộp gọi ngun tố ví dụ hình 1.3 Ơ ngun tố tích nhỏ chứa nút mạng Hình 1.3 Ơ nguyên tố lập phương đơn giản Bao chọn ngun tố để cho có đầy đủ tínhchất đối xứng mạng Bravais Cách chọn tiếng chọn ô Wigner- Seitz, xây dựng sau Lấy nút xác định mạng Bravais, tìm nút lân cận theo tất phương, vẽ mặt phẳng trực giao với đoạn thẳng nối O với tất nút lân cận trung điểm đoạn Khoảng không gian giới hạn mặt ngun tố Wigner- Seitz (Hình 1.4) Hình 1.4 Ơ ngun tố Wigner – Seitz mạng lập phương tâm mặt 1.1.1.5 Phân loại mạng Bravais Để mô tả ô sở cần phải biết sáu đại lượng ba cạnh a1 a2 , a3 , góc , , tạo thành với ba cạnh hình Hình 1.5 a3 a a1 Hình 1.5 Mơ tả sở Căn vào tínhchất đối xứng loại mạng không gian người ta chia 14 mạng Bravais thành hệ ứng với bảy loại ô sơ cấp khác nhau, trình bày bảng 1.1.1.5 ne x jx pe e (2.66) Lưu ý tính tốn ta loại bỏ số hạng chứa B , thay kết x (2.66) vào (2.65) ta thu được: pe ne h B (2.66) j e ne y U pe pe ne y a ne x h I e e pe 2 a.d B Cần lưu ý rằng, hiệu điện theo trục y, Uy hiệu điện Hall, UH Do ta có: pe ne U IB h (2.67) nee pe 2 d H R I.B H H d Suy biểu thức số Hall: 2 pe ne U R H ne h e e e pe h p n 2 (2.68) h e n e p h Trong trường hợp bándẫn loại n tức p = 0, từ (2.58) ta tính được: Re 0, khoảng nhiệt độ H Ở nhiệt độ đủ cao, dẫn điện tạp chất khơng đáng kể so với dẫn điện riêng Khi n ≈ p, từ (2.68), ta có: R 2 h e pe e h (2.71) Như nhiệt độ cao, dấu số Hall phụ thuộc vào chênh lệch độ linh động lỗ trống electron Trong q trình tính toán trên, ta coi hạt mang điện loại có vận tốc chuyển động định hướng vận tốc trung bình Ve ;V h , tức ta không để ý đến phân bố thống kê vận tốc Tùy theo chế tán xạ mà hạt mang điện có hàm phân bố vận tốc khác Nếu xét đến điều cơng thức xác định hàng số Hall (2.69) (2.70) có dạng: Rr en 3 1,178 Đối với tán xạ phono hệ số tỷ lê: r = Khi tán xạ lên tạp chất bị ion hóa, thì: r 1,93 Còn tán xạ lên tạp chất không bị ion hóa thì: r 30 (2.72) 2.2 Tínhchất quang bándẫn 2.2.1 Hệ thức tán sắc bándẫn Đối với môi trường đẳng hướng, điện trường tĩnh, ta có vecto cảm ứng điện trường D : (2.73) D E E 4 P Trong đó: E - vecto cường độ điện trường P - vecto phân cực - hệ số điện thẩm Lưu ý hệ thức (2.73) giả thiết mối liên hệ D tuyến tính giá trị D( ,t) thời điểm không E gian ( ,t) Trong điện trường biến thiên mạnh (tần số lớn) ta không phép giả thiết vecto cảm ứng điện phụ thuộc vào vecto cường độ điện D trường thời điểm t, giá trị D(t) xác định E giá trị E(t) thời điểm t mà giá trị E(t’) ứng với thời điểm t’ trước (-∞