Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
0,95 MB
Nội dung
1 - PHẦN MỞ ĐẦU 1.1 – Lý chọn đề tài “Hiền tài nguyên khí quốc gia, ngun khí thịnh nước mạnh mà hưng thịnh, ngun khí suy nước yếu mà thấp hèn Vì bậc đế vương thánh minh khơng đời không coi việc giáo dục nhân tài, kén chọn kẻ sĩ, vun trồng ngun khí quốc gia làm cơng việc cần thiết " câu nói bất hủ Tiến sĩ triều Lê, Thân Nhân Trung cho thấy từ thời xa xưa hệ ông cha coi trọng nhân tài coi nhân tài tương lai đất nước Với cương vị giáo viên chuyên ngành Toán – Tin trực tiếp giảng dạy, thấy nhiệm vụ quan trọng phải làm làm đểhọc sinh thích họchọc giỏi mơn Tốn Trong đó, Tốn học có vai trò vị trí đặc biệt quan trọng khoa học kĩ thuật đời sống, giúp người tiếp thu cách dễ dàng mơn khoa học khác có hiệu Thơng qua việc học tốn, học sinh nắm vững nội dung toánhọc phương pháp giải toán, từ vận dụng vào mơn học khác môn khoa học tự nhiên Dù thời đại nào, hay quốc gia việc bồi dưỡng nhân tài đặt lên hàng đầu Từ đào tạo người động sáng tạo, có khả giải xử lý vấn đề khó nhằm phục vụ cho lợi ích huyện, tỉnh quốc gia Trong năm trở lại đây, chất lượng giáo dục học sinh giỏi cấp tỉnh Phòng Giáo dục – Đào tạo Lệ Thủy có bước nhảy vọt đáng kể, đặc biệt mơn Tốn, điều thơi thúc tơi suy nghĩ tìm tòi dạng tốn quan trọng cơng tác bồi dưỡng học sinh giỏi mơn Tốn Trong chương trình phân mơn hìnhhọc THCS, học sinh gặp nhiều khó khăn, từ việc nắm bắt lý thuyết, định lý, định nghĩa, tiên đề, đến việc lập luận để chứng minh tốn Trong chương trình hìnhhọc THCS, hìnhhọc lớp coi “nặng” nhất, tiếp nối phát triển kiến thức mở đầu lớp Trong trình dạy họchìnhhọc 7, khơng thể tránh khỏi việc phải vẽthêm yếu tố phụđểgiảitoán – phương pháp hay khó Vẽthêm yếu tố phụ giúp cho việc kết nối từ giả thiết đến kết luận toándễ dàng hơn, thuận lợi Tuy nhiên, việc vẽthêmhìnhphụđể có lời giải đẹp vấn đề khiến phải đầu tư suy nghĩ Thực tế cho thấy phương pháp chung cho việc vẽthêmhìnhphụgiải tốn hìnhhọc Tùy tốn cụ thể mà có cách vẽthêmhìnhphụ hợp lý để đến với lời giải tốn Sự xuất hìnhphụ thổi hồn vào lời giảitoán mà hẳn có lần lúng túng, chật vật trước tốn hìnhhọc giật nảy phát cần vẽthêm yếu tố đến với lời giải tốn Vẽthêmhìnhphụ sáng tạo “nghệ thuật” tùy theo yêu cầu tốn cụ thể Bởi việc vẽthêmhìnhphụ cần đạt mục đích tạo điều kiện đểgiảitoán thuận lợi công việc tùy tiện Nếu giáo viên làm khơng tốt việc phân tích phải làm học sinh giỏi lơ mơ việc làm đó, thực cách thụ động mà khơng biết phân tích, tìm sở cho việc vẽthêm yếu tố phụ Việc vẽthêmhìnhphụ nhằm đạt ba vấn đề sau: - Giúp giảisố tốn hìnhhọc mà khơng vẽthêmhìnhphụ bế tắc - Trình bày lời giảisố tốn hìnhhọc gọn hơn, hay - Phát vấn đề chưa học vốn kiến thức hạn chế mà sau vấn đềhọc đến đơn giản 1.2 – Điểm đề tài “Kinh nghiệmvẽthêmhìnhphụđểgiảisố tốn hìnhhọc 7” nhiều người nhắc đến Tuy nhiên nêu chung chung chưa khái quát phương pháp cụ thể cho học sinh Vì thế, đề tài này, với kinhnghiệm thân đúc kết qua trình nghiên cứu thực tế giảng dạy, cố gắng phân tích, cụ thể việc vẽthêmhìnhphụ thơng qua ví dụ minh họa Mong đề tài đồng nghiệp em học sinh đón nhận 1.3 – Phạm vi đối tượng nghiên cứu * Đối tượng nghiên cứu: Như nói trên, đề tài tập trung vào đối tượng: - Giáo viên giảng dạy mơn Tốn THCS Đặc biệt GV giảng dạy bồi dưỡng học sinh giỏi lớp 7, lớp - Học sinh giỏi lớp lớp * Phạm vi nghiên cứu: - Trong sáng kiến nêu số “kinh nghiệm”, sốhìnhphụvẽthêm tốn hìnhhọc lớp mà thường hay gặp - Phân tích cụ thể trường hợp Trong trường hợp thường vẽthêmhìnhphụđể giúp học sinh có định hướng việc giải tập – PHẦN NỘI DUNG 2.1 – Thực trạng nội dung cần nghiên cứu Thực tế cho thấy Toánhọc tảng cho ngành khoa học, chìa khố vạn để khai phá thúc đẩy phát triển cho ngành khoa học, kinh tế, qn sống Chính việc dạy học mơn tốn nhà trường đóng vai trò vơ quan trọng Dạy tốn chiếm vị trí số mơn học nhà trường, giáo viên, dạy toán niềm tự hào song thử thách vơ lớn Để dạy tốn học tốn tốt Thầy Trò khơng ngừng rèn luyện đầu tư trí lực vào nghiên cứu học hỏi Học dạy tốn với chương trình khó, xong dạy họctoán đào tạo mũi nhọn lại vô gian truân, việc học dạy không dừng việc người học người dạy phải có trí tuệ định mà thầy trò phải dày cơng đầu tư vào nghiên cứu dạng tốn, thuật tốn vận dụng hợp lý tính chất tốn học nhà toánhọc nghiên cứu vào giải tốn, ngồi người dạy học tốn phải tự rèn luyện nghiên cứu để có cơng trình tốn riêng góp sức để đưa mơn tốn ngày phát triển Thực nhiệm vụ năm học phân cơng Phòng Giáo dục Đào tạo Lệ Thủy, qua trình giảng dạy nhiều năm gần thân thấy việc hình thành cho học sinh cách suy nghĩ để tìm lời giải cho tốn dạng tốn cơng việc khó Đứng trước tốn người thầy chưa hiểu, chưa có hướng giải ta hướng dẫn học sinh nào, thật khó tình người thầy vai trò chủ đạo việc dạy học sinh, học sinh khơng giải tốn lại niềm tin thầy cảm thấy việc học tốn cực hình, khó vơ khơng thể họcHìnhhọc lĩnh vực cổ xưa Toán học, với sốhọc xuất thời kỳ sơ khai lồi người Hìnhhọc có vẽ đẹp kỳ diệu làm say mê từ nhà toánhọc đến em học sinh THCS Khi trực tiếp bồi dưỡng học sinh giỏi tơi tự thấy kiến thức hìnhhọc thân hạn chế, tốn hìnhhọc cần vẽthêmhìnhphụ Đây dạng tốn hay, có nhiều cách đểvẽthêmhình phụ, xong thầy trò lại ngại đụng đến khó phải nhiều thời gian để dự đoán Từ thực tế xin trao đổi kinhnghiệm đồng nghiệp mong đề tài mở rộng phát triển sâu rộng 2.2 – Các giải pháp 2.2.1 – Giải pháp 1: Vẽthêm đường thẳng vng góc Phương pháp: Vẽthêm đường vng góc nhằm làm xuất tam giác vng, tam giác vng cân, hai tam giác vng nhau,… Ví dụ 1: Cho tam giác ABC có ·ABC = 1350 , AB = cm, BC = cm Tính độ dài cạnh AC · Hướng dẫn: Ta có ABC = 1350 = 900 + 450 Ta nghĩ đến đường phụ cần vẽthêm AH, AH ⊥ BC H Lời giải gợi ý: Vẽ AH ⊥ BC H · · Ta có ABH + ABC = 1800 (hai góc kề bù) · Nên ABH = 1800 – 1350 = 450 ⇒ ∆ AHB vuông cân H ⇒ AH = HB Áp dụng định lý Pitago vào ∆ AHB vng H, ta có: AH2 + HB2 = AB2 Hay 2AH2 = AB2 = ( )2 = ⇒ AH = 1(cm) Nên HB = AH = (cm) Ta có: HC = HB + BC = + = (cm) Áp dụng định lý Pytago vào tam giác AHC vng H, ta có: AC2 = AH2 + HC2 = 12 + 32 = 10 ⇒ AC = 10 (cm) Vậy AC = 10 (cm) Ví dụ 2: Cho tam giác ABC vng A, Trên nửa mặt phẳng bờ BC có chứa A, vẽ · · tia Bx cho ABx Qua A vẽ đường thẳng d vng góc với Bx D Qua C = ABC vẽ đường thẳng vng góc với d E Chứng minh AD = AE Hướng dẫn: Vẽ đường AH vng góc với BC để sử dụng chứng minh tam giác Chứng minh AD AE với AH Lời giải gợi ý: · Ta có A thuộc tia phân giác DBC Vẽ AH ⊥ BC H ⇒ AD = AH (1) Ta có BD ⊥ d (gt), CE ⊥ d (gt) ⇒ BD//CE ⇒ · · DBC + ECB = 1800 · · · · DBA + ACE + ABC + ACB = 1800 · · · · Mà ABC + ACB = 900 nên DBA + ACE = 900 · · · · · ⇒ A thuộc tia phân giác ECH ⇒ AE = AH (2) Mà DBA nên ACB = ABC = ACE Từ (1) (2) suy AD = AE µ2 Ví dụ 3: Trên hìnhvẽ sau cho biết µO1 = O · · AB = AC, OCA OBA tù Chứng minh OB = OC Hướng dẫn: Từ A vẽ AH ⊥ Ox, AK ⊥ Oy ( H ∈ Ox, K ∈ Oy ) dễ dàng chứng minh OH = OK cần chứng minh BH = CK Điều thật dễ dàng Lời giải gợi ý: Vẽ AH ⊥ Ox, AK ⊥ Oy ( H ∈ Ox, K ∈ Oy ) Xét ∆ KOA ∆ HOA có: µ (gt) · · OKA = OHA = 900 ; OA chung; µ O1 = O Do ∆ KOA = ∆ HOA (cạnh huyền – góc nhọn) Suy OK = OH (1); AK = AH Xét ∆ KAC ∆ HAB có: · · AKC = AHB = 900 ; AC = AB (gt); AK = AH (cmt); Do ∆ KAC = ∆ HAB (cạnh huyền – cạnh góc vng) Suy CK = BH · · Do OCA OBA tù nên C nằm O K, B nằm O H Từ OC = OK – KC; (3) OB = OH – HB Từ (1), (2), (3) (4) suy OB = OC (4) (2) Ví dụ 4: Cho tam giác ABC cân đỉnh A, BD đường trung tuyến Biết BC = 8cm, BD = 7,5 cm Tính độ dài cạnh AB Hướng dẫn: Tam giác ABC cân A, có BD đường trung tuyến Điều gợi ý ta nghĩ đến vẽ đường cao AH tam giác ABC, AH đường trung tuyến Lời giải gợi ý: Vẽ AH đường cao tam giác ABC Do tam giác ABC cân đỉnh A, nên AH đường trung tuyến Gọi G giao điểm AH BD ∆ ABC có AH BD hai trung tuyến cắt G, suy G trọng tâm tam giác ABC ⇒ BG = BD = 5cm GH = AH 3 Áp dụng định lý Pitago vào ∆ HBG vng H, ta có: GH2 + BH2 = BG2 ⇒ GH2 = BG2 – BH2 = 52 – 42 = ⇒ GH = (cm) Nên AH = 3GH = 9cm Xét tam giác HAB vuông H ⇒ AB2 = AH2 + HB2 (định lý Pitago) ⇒ AB2 = 92 + 42 = 97 ⇒ AB = 97 (cm) Vậy AB = 97 cm Ví dụ 5: Cho tam giác ABC Về phía ngồi tam giác vẽ tam giác ABD vuông cân đỉnh B, tam giác ACE vuông cân đỉnh C Gọi M giao điểm BE CD Chứng minh AM ⊥ BC Hướng dẫn: Vẽ AK ⊥ BC K Qua B vẽ đường thẳng vng góc với CD cắt AK N Qua C vẽ đường thẳng vng góc với BE cắt AK P Tìm cách chứng minh N ≡ P Lời giải gợi ý: Vẽ AK ⊥ BC K Qua B vẽ đường thẳng vng góc với CD cắt AK N Qua C vẽ đường thẳng vuông góc với BE cắt AK P Xét ∆ BDC ∆ ABN có: ( ) · · · DBC = BAN = 900 + ABC ; · · · (cùng phụ với DBN ) BDC = ABN BD = AB (Tam giác DBA vuông cân A) Do ∆ BDC = ∆ ABN (g.c.g) ⇒ BC = AN Chứng minh tương tự có: ∆ CEB = ∆ ACP (g.c.g) ⇒ BC = AP Ta có AN = AP (=BC) ⇒ N ≡ P Xét tam giác NBC có BE, CD hai đường cao cắt M nên M trực tâm tam giác NBC ⇒ NM ⊥ BC Ta có AK ⊥ BC (gt) Do N, A, M, K thẳng hàng Vậy AM ⊥ BC 2.2.2 – Giải pháp 2: Vẽthêm đường thẳng song song Phương pháp: Vẽthêm đường song song nhằm làm xuất hai góc nhau, hai góc bù nhau, Ví dụ 6: Trên hình bên cho biết: ·xAC = α · · = β ACB = α + β Chứng minh , CBy Ax//By Hướng dẫn: Muốn chứng minh Ax//By, ta chứng minh chúng song song với · · đường thẳng thứ ba Vì ·xAC = α , CBy = β ACB = α + β Ta tạo tia Cz cho Cz//Ax Chúng ta chứng minh Cz//By, từ suy Ax//By Lời giải gợi ý: Vẽ tia Cz cho Cz//Ax (hình vẽ) · Ta có ·xAC = ACz (so le trong) · · · Ta có ACz + BCz = ACB · · · ⇒ BCz = ACB − ACz = α + β −α = β · · · · = CBy Vì BCz ( = β ) , BCz CBy so le Do By//Cz Ta có Cz//Ax By//Cz Vậy Ax//By Ví dụ 7: Cho tam giác ABC (AB < AC) Từ trung điểm M BC kẻ đường thẳng vng góc với tia phân giác góc A cắt tia H, cắt AB D AC E Chứng minh BD = CE Hướng dẫn: Muốn chứng minh BD = CE, ta tìm cách tạo “đoạn thẳng thứ ba” chứng minh chúng “đoạn thẳng thứ ba” Lời giải gợi ý: Kẻ đường thẳng qua B song song với CE cắt DE F Xét ∆MBF ∆MCE có: · · (so le trong) FBM = ECM BM = MC (gt) · · (đđ) BMF = CME ⇒ ∆MBF = ∆MCE (g.c.g) ⇒ BF = EC (1) ∆ ADE có AH đường cao (vì AH ⊥ BC) đồng thời phân giác (gt) nên ∆ ADE cân A ⇒ ·ADE = ·AED · Mặt khác BF//EC nên BFD = ·AED (đồng vị) · · ⇒ ∆BDF cân B ⇒ BD = BF (2) ⇒ BDF = BFD Từ (1) (2) suy ra: BD = CE Ví dụ 8: Cho tam giác ABC cân đỉnh A Trên cạnh AB lấy điểm D, tia đối tia CA lấy điểm E cho BD = CE Nối D với E Gọi I trung điểm đoạn thẳng DE Chứng minh điểm B, I, C thẳng hàng Hướng dẫn: Vẽthêm DF//AC (F∈ BC) Tìm cách chứng minh ·EIC + ·EIF = 1800 Lời giải gợi ý: · Vẽ DF//AC (F∈ BC), DFB ·ACB đồng vị ·DFB = ·ACB Mà ABC · · = ACB (tam giác ABC cân đỉnh A) · · ⇒ ∆ DBF cân đỉnh D ⇒ DB = DF Suy DFB = ABC Xét ∆ DIF ∆ EIC có: F DI = IE (gt) · · (so le trong) FDI = CEI DF = CE (= BD) Do ∆ DIF = ∆ EIC (c.g.c) · · Suy DIF Mà ·DIF + ·EIF = 1800 = EIC Do ·EIC + ·EIF = 1800 Suy B, I, C thẳng hàng Vậy B, I, C thẳng hàng 2.2.3 – Giải pháp 3: Vẽthêm tia phân giác góc Phương pháp: Các tốn liên quan đến góc nhiều vẽthêm tia phân giác góc giúp tạo thêm mối quan hệ góc, cạnh để đến với lời giải tốn dễ dàng µ = 600 , BD CE hai đường phân giác tam Ví dụ 9: Cho tam giác ABC có A giác ABC Gọi I giao điểm BD CE Chứng minh ID = IE Hướng dẫn: · Dễ thấy BIC = 1200 Vẽ đường phân giác IM tam giác IBC giúp chứng minh ID = IE cách chứng minh ID = IM IM = IE Lời giải gợi ý: Vẽ IM đường phân giác tam giác BIC 1· · = ABC Ta có: IBC (BD phân giác ·ABC ) 1· · ICB = ACB (CE phân giác ·ACB ) Nên ·BIC = 1800 – ( ·IBC + ·ICB ) ( = 1800 - · ABC + ·ACB = 1800 - 1800 − ·BAC ( ) ) = 1200 ·EIB ·DIC kề bù với ·BIC nên ·EIB = ·DIC = 600 · Suy ·EIB = ·BIM = ·MIC = CID = 600 Xét ∆BEI ∆BMI có: ·EBI = ·MBI (BD phân giác ·ABC ) 10 ( ) ·EIB = ·BIM = 600 BI cạnh chung Do ∆BEI = ∆BMI (g.c.g) Suy IE = IM Chứng minh tương tự ta có ID = IM Vậy ID = IE µ = 600 BD CE hai đường phân giác tam Ví dụ 10: Cho tam giác ABC có A giác ABC Chứng minh BE + CD = BC Lời giải gợi ý: Gọi I giao điểm BD CE Vẽ IM · đường phân giác BIC tam giác IBC 1· · = ABC Ta có: IBC (BD phân giác) 1· · = ACB ICB (CE phân giác) ( ) ( ) ( ) · · · · · · = 1800 − IBC + ICB = 1800 − ABC + ACB = 1800 − 1800 − BAC = 1200 Nên BIC 2 · · · · Do EIB = BIM = MIC = CID = 600 Xét ∆ BEI ∆ BMI có: · · · · , EIB , BI cạnh chung EBI = MBI = MIB Do ∆ BEI = ∆ BMI (g.c.g) ⇒ BE = BM Chứng minh tương tự ta có CD = MC Vậy BE + CD = BM + MC = BC 2.2.4 – Giải pháp 4: Vẽthêm tam giác vuông cân, tam giác Phương pháp: Vẽthêm tam giác vuông cân, tam giác làm xuất cạnh nhau, góc nhau, góc có số đo 450 (vẽ thêm tam giác vng cân), góc có số đo 600 (vẽ thêm tam giác đều) µ = 800 Gọi D điểm nằm Ví dụ 11: Cho tam giác cân ABC (AB = AC) có A · · tam giác cho DBC = 100 , DCB = 300 Tính số đo góc BAD Hướng dẫn: 11 µ = 800 , ⇒ ·ACB = ·ABC = 500 mà DBC · Nhận xét ∆ ABC (AB = AC) có A = 100 , · DCB = 300 Trong trường hợp ta sử dụng vẽthêm tam giác BMC nằm nửa mặt phẳng bờ BC chứa điểm A Từ xác định số đo góc BAD Lời giải gợi ý: Vì ∆ ABC cân A, ¶Α = 800 nên ·ABC = ·ACB = 500 Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác MBC Ta có: ·ABM = ·ACM = 100 Xét ∆ AMB ∆ AMC có: AB = AC (gt) BM = CM (theo cách dựng) AM cạnh chung ⇒ ∆ AMB = ∆ AMC (c.c.c) ⇒ ·AMB = ·AMC Mà ·AMB + ·AMC = 600 nên ·AMB = ·AMC = 300 Xét ∆ AMB ∆ DCB có: MB = BC (theo cách dựng) ·AMB = DCB · = 300 ·ABM = ·DBC = 100 ⇒ ∆ AMB = ∆ DCB (g.c.g) ⇒ AB = BD 1800 − 400 Xét ∆ ABD cân B có ·ABD = 400 ⇒ ·BAD = ·BDA = = 700 Vậy ·BAD = 700 Ví dụ 12: Cho tam giác ABC cân A có góc đáy 80 Trên AB lấy điểm D cho AD = BC Tính số đo góc ACD? Lời giải gợi ý: Vì tam giác ABC cân A nên µA = 1800 − 2·ABC = 200 Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác EBC Ta có: ·ACE = ·ABE = 200 Xét ∆ ACE ∆ CAD có: 12 AC cạnh chung EC = AD (= BC) ·ACE = CAD · = 200 · ⇒ ∆ ACE = ∆ CAD (c.g.c) ⇒ ·ACD = EAC (1) Xét ∆ AEB ∆ AEC có: AB = AC (gt) AE cạnh chung EB = EC (theo cách dựng) · · ⇒ ∆ AEB = ∆ AEC (c.c.c) ⇒ EAB = EAC 1· · · · · Mà EAB + EAC = BAC = 200 ⇒ EAC = BAC = 10 (2) Từ (1) (2) ta có: ·ACD = 100 Ví dụ 13: Cho tam giác ABC vuông cân A Lấy điểm M nằm phía tam giác ABC cho ·AMC = 1350 , MA = 2cm, MB = 3cm Tính độ dài đoạn thẳng MC 0 · · · Hướng dẫn: ∆ABC có BAC = 900 , ABC = ACB = 450 Ta có: 135 = 90 + 45 giúp ta nghĩ đến vận dụng định lý Pytago, tam giác vng cân để tìm tam giác vng có cạnh MC hai cạnh tìm độ dài Lời giải gợi ý: Trên nửa mặt phẳng bờ AM không chứa điểm B dựng tam giác ADM vuông cân đỉnh A · Ta có AD = MA = 2cm AMD = 450 , · · · DMC = AMC − AMD = 900 Xét ∆ ADC ∆ AMB có: · · · AD = AM; DAC (cùng phụ với CAM = MAB ), AC = AB (gt) Do ∆ ADC = ∆ AMB (c.g.c) ⇒ DC = MB Xét ∆ AMD vuông cân A nên MD2 = MA2 + AD2 (định lý Pytago) Do MD2 = 22 + 22 = Xét ∆ MDC vuông M, ta có: DC2 = MC2 + MD2 (định lý Pytago) ⇒ MC2 = DC − MD = 32 – = ⇒ MC = (cm) 13 – PHẦN KẾT LUẬN Trên vài kinhnghiệm nhỏ rút từ thực tế năm giảng dạy thân tơi Tốn vẽthêmhìnhphụ dạng tốn khó mà giáo viên hay học sinh làm Với khả hạn chế thân, đề cập đến số dạng đơn giản mà em học sinh thường gặp chương trình lớp 7, lớp Tôi sâu vào vấn đề nhỏ hướng dẫn, giúp em có kỹ nhìn nhận hướng đi, cách làm từ tìm cách giải theo u cầu toán Với việc làm nêu trên, thân tự nghiên cứu áp dụng Bước đầu tơi thấy có số kết sau: - Phần lớn học sinh say mê giải tốn vẽhình phụ, em khơng sợ lúng túng giải tốn dạng nữa, chí có nhiều em có nhiều cách vẽhìnhphụ khác để tìm cách giải khác hay độc đáo - Các em có niềm tin, niềm say mê, hứng thú học tốn, từ tạo cho em tính tự tin độc lập suy nghĩ, phát triển tư logic, óc quan sát, suy luận tốn học - Trong trình giải tập giúp em có khả phân tích, suy ngẫm, khái qt vấn đề cách chặt chẽ, em khơng ngại khó, mà tự tin vào khả học tập Việc nghiên cứu đề tài việc làm thiết thực, góp phần cho GV dạy tốt hơn, học sinh học chủ động hơn, đặc biệt phát toán, dạng toán mà khơng vẽthêmhìnhphụ khó đểgiảiĐề tài nêu lên số phương pháp cụ thể toán cần vẽthêmhình phụ, từ tạo cho học sinh thêm linh động, chắn giảitoán Những biện pháp học tơi trình bày trên, bước đầu đạt kết chưa thật mỹ mãn tâm ý thân Tuy nhiên, thực tốt tơi nghĩ góp phần đổi phương pháp dạy học mà ngành quan tâm đạo để nâng cao chất lượng học sinh nói chung chất lượng mũi nhọn nói riêng Mặt khác, thiết nghĩ, sau học xong tài liệu học sinh khơng khơng lúng túng tốn có vẽthêmhìnhphụ mà hình thành cho phương pháp giải đắn, xác Trên điều mà nghiên cứu, đúc kết trình giảng dạy mà thân vận dụng dạy học sinh đem lại kết tốt Tuy nhiên nhiều thiếu sót, nhiều vấn đề cần phải bàn thêm Vì tơi mong góp ý, xây dựng thầy giáo, cô giáo, bạn đồng nghiệp, nhằm giúp tơi bước hồn thiện phương pháp giảng dạy mình, đồng thời góp phần vào việc nâng cao chất lượng dạy học phần tốn hình có vẽthêmhình phụ, góp phần tạo hứng thú cho học sinh học dạng tốn Tuy nhiên khơng nên q lạm dụng có làm tốn trở nên phức tạp ... yếu tố phụ Việc vẽ thêm hình phụ nhằm đạt ba vấn đề sau: - Giúp giải số toán hình học mà khơng vẽ thêm hình phụ bế tắc - Trình bày lời giải số tốn hình học gọn hơn, hay - Phát vấn đề chưa học vốn... phương pháp chung cho việc vẽ thêm hình phụ giải tốn hình học Tùy tốn cụ thể mà có cách vẽ thêm hình phụ hợp lý để đến với lời giải tốn Sự xuất hình phụ thổi hồn vào lời giải toán mà hẳn có lần lúng... hình học giật nảy phát cần vẽ thêm yếu tố đến với lời giải tốn Vẽ thêm hình phụ sáng tạo “nghệ thuật” tùy theo yêu cầu tốn cụ thể Bởi việc vẽ thêm hình phụ cần đạt mục đích tạo điều kiện để giải