Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
0,93 MB
Nội dung
GIÁO ÁN ĐIỆN TỬ MÔN : ĐẠI 9, TIẾT 55 GV Thực hiện: Đỗ Thanh Bình Tháng 11 năm 2008 KiĨm tra bµi cị Áp dụng cơng thức nghiệm giải phương trình sau : a) 5x2 + 4x – = ; b) x 3x 0 Gi¶i a) Giải phương trình 5x2 + 4x – = (a = 5; b = ; c = -1) Ta có: Δ = 42 - 4.5.(-1) = 16 + 20 = 36 Do Δ = 36 > nên phương trình có hai nghiệm phân biệt: b) Giải phương trình x 3x 0 (a = 1; b = ; c = 3) Ta có: (2 3)2 4.1.3 = 12 - 12 =0 Do Δ = nên phương trình có nghiệm kép : x1 36 2.5 10 x2 36 2.5 10 x1 x 2 2.1 Qua phần kiểm tra cũ, ta giải hai phương trình : a) 5x2 + 4x – = ; b) x x 0 Hệcách số bgiải hai Cịn phương trình? nhanh khơng có điều đặc biệt ? §5 Công thức nghiệm thu gọn Công thức nghiệm thu gọn Phương trình ax2 + bx + c = (a≠0) nhiều trường hợp ta đặt b = 2b’ (b’ = b:2) Δ = b2 – 4ac = (2b’)2 – 4ac = 4b’2 – 4ac = 4(b’2 – ac) Kí hiệu : Δ’ = b’2 – ac ta có : Δ = 4Δ’ ?1 SGK Dựa vào đẳng thức Δ = 4Δ’ Hãy điền vào chổ …… phiếu học tập theo mẫu sau : Nếu ∆ > ∆’ > , phương trình có hai nghiệm phân biệt : nhận b xét 2b 'về 4 ' 2b ' Δ ' 2( ∆’ b' ? ') Hãy dấu x1 = 2a 2a 2a 2a x2 = b'(1) ' …………… a b b'(5) ' 2b'(2) 4 ' 2b(3) ' ' (4) 2( b ' ') …………… …………… …………… …………… = = = a 2a 2a 2a 2a có(7) nghiệm kép Nếu ∆ = ………… Δ’ (6) = , phương trình …………… b 2b'(8) b ' (9) …………… ………… = x1 = x2 = 2a 2a a Nếu ∆ < ………… Δ’ (10) < , phương trình (11) vơ nghiệm …………… §5 Cơng thức nghiệm thu gọn Công thức nghiệm thu gọn Đối với phương trình ax + bx + c = (a ≠ 0) b = 2b’, Δ’ = b’2 – ac : Nếu ∆’ > phương trình có hai nghiệm phân biệt : b ' ' b ' ' ; x1 = x2 = a a Nếu ∆’ = phương trình có nghiệm kép : b' x1 = x2 = a Nếu ∆’ < phương trình vơ nghiệm Ta có : a = ; b’ = ; c = -1 Δ’ = b’ - ac =22 – 5.(-1)= + = Δ' =3>0 Nghiệm phương trình : b ' Δ ' a 5 b' Δ ' x2 = a x1 = Ví dụ : Giải Áp dụng phương trình sau: Ví dụ 1: Giải phương trình 5x + 4x – = cách điền vào chỗ chỗ sau : a) 3x2 + 8x + = b) x 2x 18 0 c) 7x 3x 0 §5 Cơng thức nghiệm thu gọn 1.Cơng thức nghiệm thu gọn Đối với phương trình ax2 + bx + c = (a ≠ 0) b = 2b’, Δ’ = b’2 – ac : Nếu ∆’ > phương trình có hai nghiệm phân biệt : b ' ' b ' ' ; x1 = x = a a Nếu ∆’ = phương trình có nghiệm kép : b' x = x2 a = Nếu ∆’ < phương trình vơ nghiệm Ví dụ 2:Giải phương trình sau: a) 3x2 + 8x + = ; Giải a) Giải phương trình : 3x2 + 8x + = (a = 3; b’ = ; c = 4) Ta có: Δ’ = 42 - 3.4 = 16 - 12 =4 Do Δ’ = > nên phương trình có hai nghiệm phân biệt: Áp dụng Ví dụ : Giải phương trình sau: a) 3x2 + 8x + = b) x 2x 18 0 c) 7x 3x 0 4 42 3 4 4 x2 3 x1 §5 Cơng thức nghiệm thu gọn Cơng thức nghiệm thu gọn Đối với phương trình ax2 + bx + c = (a ≠ 0) b = 2b’, Δ’ = b’2 – ac : Nếu ∆’ > phương trình có hai nghiệm phân biệt : x1 = b ' ' a ; x2 = Ví dụ 2:Giải phương trình sau: b) Giải b) Giải phương trình b ' ' a Nếu ∆’ = phương trình có nghiệm kép : b' x = x2 a = Nếu ∆’ < phương trình vơ nghiệm Áp dụng Ví dụ : Giải phương trình sau: x 2x 18 0 x 2x 18 0 (a = 1; b’ = Ta có: b)x 2x 18 0 7x c) 3x 0 ; c = 18) ' ( 2)2 1.18 = 18 - 18 =0 Do Δ’ = nên phương trình có nghiệm kép: a) 3x2 + 8x + = 2 x1 x b' ( 2) 3 a §5 Công thức nghiệm thu gọn Công thức nghiệm thu gọn Đối với phương trình ax2 + bx + c = (a ≠ 0) b = 2b’, Δ’ = b’2 – ac : Nếu ∆’ > phương trình có hai nghiệm phân biệt b ' ' x1 = a ; b ' ' x2 = a Nếu ∆’ = phương trình có nghiệm kép : b' x = x2 a = Nếu ∆’ < phương trình vơ nghiệm Áp dụng Ví dụ : Giải phương trình sau: a) 3x + 8x + = 2 b)x 2x 18 0 7x c) 3x 0 Ví dụ 2:Giải phương trình sau: c) 7x Giải 2x 0 c) Giải phương trình 7x 3x 0 (a = 7; b’ = ; c = 2) Ta có: ' (2 )2 7.2 = 12 - 14 = -2 Do Δ’ = -2 < nên phương trình vơ nghiệm Củng cố luyện tập A Những kiến thức cần nắm học: - Công thức nghiệm thu gọn Đối với phương trình ax2 + bx + c = (a≠0) b=2b’, Δ’=b’2 – ac: Nếu ∆’ > phương trình có hai nghiệm phân biệt : b ' ' b' ' x = Xác định kiến; thức trọng tâm học ? a x1 = a Nếu ∆’ = phương trình có nghiệm kép : b' x1 = x = a Nếu ∆’ < phương trình vơ nghiệm -Các bước giải phương trình bậc hai công thức nghiệm thu gọn + Xác định hệ số a, b’ c + Tính ∆’ xác định ∆’ > ∆’ = ∆’ < + Tính nghiệm phương trình (nếu có) Củng cố luyện tập B Bài tập Cách xác định hệ số b’ trường hợp sau, trường hợp đúng: Sai a Phương Đúng b Đúng c Phương trình x2 – 3x + = có hệ số b’ = -2 Đúng d Phương trình -3x2 + 2( Sai e Phương trình x2 – x - = có hệ số b’ = -1 trình 2x2 – 6x + = có hệ số b’ = Phương trình 2x2 – 6x + = có hệ số b’ = -3 21 ) x + = có hệ số b’ = 21 Củng cố luyện tập B Bài tập Giải phương trình x2 – 2x - = hai bạn Minh Dũng làm sau: bạn Minh giải: Phương trình x2 - 2x - = (a = 1; b = -2 ; c = -6) Δ = (-2)2 – 4.1.(-6) = + 24 = 28 Do Δ = 28 > nên phương trình có hai nghiệm phân biệt: ( 2) 28 1 2.1 ( 2) 28 x2 1 2.1 x1 bạn Dũng giải: Phương trình x2 - 2x - = (a = 1; b’ = -1 ; c = -6) Δ’ = (-1)2 –1.(-6) = + = Do Δ’ = > nên phương trình có hai nghiệm phân biệt: x1 ( 1) 1 x2 ( 1) 1 bạn Bình bảo : bạn Minh giải sai, bạn Dũng giải Còn bạn Thu nói hai bạn làm Theo em : đúng, sai Em chọn cách giải bạn ? Vì sao? phần kiểm tra cũ, ta giải hai phương trình a) 5x2 + 4x - = ; x b) 3x 0 Để việc tính giải hai phương trình thuận tiện ta nên dùng công thức nghiệm hay công thức nghiệm thu gọn ? Có thể dùng cơng thức nghiệm thu gọn để giải phương trình x2 + 3x – = không ? Hướng dẫn nhà Học thuộc : - Công thức nghiệm thu gọn - Các bước giải phương trình cơng thức nghiệm thu gọn Vận dụng công thức nghiệm công thức nghiệm thu gọn vào giải tập : Bài 17, 18, 20, 21 SGK để tiết sau luyện tập ... trình thu? ??n tiện ta nên dùng công thức nghiệm hay công thức nghiệm thu gọn ? Có thể dùng cơng thức nghiệm thu gọn để giải phương trình x2 + 3x – = không ? Hướng dẫn nhà Học thu? ??c : - Công thức nghiệm. .. Hướng dẫn nhà Học thu? ??c : - Công thức nghiệm thu gọn - Các bước giải phương trình cơng thức nghiệm thu gọn Vận dụng công thức nghiệm công thức nghiệm thu gọn vào giải tập : Bài 17, 18, 20, 21 SGK... = 18 - 18 =0 Do Δ’ = nên phương trình có nghiệm kép: a) 3x2 + 8x + = 2 x1 x b'' ( 2) 3 a §5 Công thức nghiệm thu gọn Công thức nghiệm thu gọn Đối với phương trình ax2 + bx + c = (a