Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
570 KB
Nội dung
MỤC LỤC A MỞ ĐẦU Lý chọn đề tài .Trang 2 Mục đích nghiên cứu Trang 3.Đối tượng nghiên cứu Trang Phương pháp nghiên cứu Trang B NỘI DUNG ĐỀ TÀI Cơ sở lý luận………………………………………………………………Trang Thực trạng sáng kiến kinh nghiệm………………… Trang Các sáng kiến kinh nghiệm, biện pháp sử dụng … ………………………Trang I Các toán gốc………………………………………………………… Trang II Các hướng khai thác………………………………………………………Trang Hiệu SKKN……………………………… Trang 13 C KẾT LUẬN Kết luận………………………………………………………………… Trang 14 Kiến nghị……………………………………………………………… Trang 14 D TÀI LIỆU THAM KHẢO……………………… Trang 15 LỜI CAM ĐOAN………………………………………………………….Trang 16 A MỞ ĐẦU Lý chọn đề tài Giáo dục Việt Nam tập trung đổi mới, hướng tới giáo dục tiến bộ, đại ngang tầm với nước khu vực toàn giới Chính vai trò việc đổi phương pháp hướng đến tích cực chủ động sángtạo phát triển lực người học cần thiết Vai trò toánhọc ngày quan trọng tăng lên không ngừng, thể tiến nhiều lĩnh vực khác khoa học, công nghệ, sản xuất đời sống xã hội, đặc biệt với máy tính điện tử, toánhọc thúc đẩy mạnh mẽ trình tự động hoá sản xuất, mở rộng nhanh phạm vi ứng dụng trở thành công cụ thiết yếu khoahọcToánhọc có vai trò quan trọng ngẫu nhiên mà liên hệ mật thiết với mônhọc khác liên hệ thường xuyên với thực tiễn, lấy thực tiễn làm động lực phát triển mục tiêu phục vụ cuối Toánhọc có nguồn gốc từ thực tiễn lao động sản xuất người ngược lại toánhọc công cụ đắc lực giúp người chinh phục khám phá giới tự nhiên, số ngành khoahọc cần toánhọc để phát triển Để đáp ứng phát triển kinh tế, khoahọc khác, kỹ thuật sản xuất đòi hỏi người lao động phải có hiểu biết có kỹ ý thức vận dụng thành tựu toánhọc điều kiện cụ thể để mang lại hiệu lao động thiết thực Chính lẽ nghiệp giáo dục – đào tạo thời kì đổi phải góp phần định vào việc bồi dưỡng chohọcsinh tiềm trí tuệ, tự sáng tạo, lực tìm tòi chiếm lĩnh trí thức, lực giải vấn đề, đáp ứng với thực tế sống Để đáp ứng với phát triển kinh tế tri thức phát triển khoahọc từ ngồi ghế nhà trường phải dạy chohọcsinh tri thức để tạo người lao động, tự chủ, động sángtạo có lực để đáp ứng yêu cầu phát triển đất nước nguồn lực thúc đẩy cho mục tiêu kinh tế - xã hội, xây dựng bảo vệ Tổ quốc Chính dạy họctoán trường THPT phải gắn bó mật thiết với thực tiễn đời sống đặc biệt để tạohứng thú họctậpmôntoán vô quan trọng Nội dung tậpsáchgiáokhoa đơn giản mức độ kiến thức không cao Tuy nhiên để họcsinh có niềm đa mê tìm tòi sángtạo người thầy cần phải đầu tư khai thác phát triển mở rộng định hướng họcsinh tự khám phá tìm kiến thức Tuy nhiên thực tiễn dạy học trường THPT nhìn chung tập chung rèn luyện chohọcsinh vận dụng trí thức họctoán kỹ vận dụng tư tri thức nội môntoán chủ yếu kĩ phát triển khám phá nhứng kiến thức thông quatoánhọc chưa ý mức thường xuyên Những toán có nội dung đơn giản trình bày hầu hết chương trình toán phổ thông Tuy nhiên tìm tòi, phát triển toán còn cho ta nhiều kết thú vị Và việc làm vấn đề hạn chế Như vậy, giảng dạy toán muốn tăng cường rèn luyện khả ý thức ứng dụng toánhọcchohọcsinh thiết phải ý mở rộng phạm vi ứng dụng, mở rộng ứng dụng cần đặc biệt ý thường xuyên, qua góp phần tăng cường thực hành gắn với thực tiễn làm chotoánhọc không trừu tượng khô khan nhàm chán Họcsinh biết vận dụng kiến thức học để giải trực tiếp số vấn đề liên quan 2.Mục đích nghiên cứu - Mục đích nghiên cứu đề tài làm sáng tỏ sở lý luận thực tiễn tăng cường vận dụng toán có nội dung mở rộng phát triển gâyhứng thú tìm tòi sángtạo vào dạy họcmôntoánTHPT - Phân tích xây dựng phương án dạy học có nhiều nội dung toánhọc thể mối liên hệ vấn đề với vấn đề khác Qua hướng tới khả làm việc độc lập, tư làm toán đa chiều, khám phá tìm tòi nhiều kiến thức liên quan - Góp phần nâng cao tính thực tế, chất lượng dạy họcmôntoán trường THPT Đối tượng nghiên cứu Với mục đích nghiên cứu nêu trên, đối nghiên cứu đề tài là: a/ Nghiên cứu tính thực tiễn, tính ứng dụng tính liên thông toánhọc b/ Những tậptoán đơn giản có vai trò trình họctoán phát triển tư toán c/Tìm hiểu thực tiễn dạy họcmôntoán nhà trường vấn đề tăng cường vận dụng tậptoán có nội dung dễ tập vào giảng dạy d/ Đề xuất biện pháp thiết kế, tổ chức dạy học, tiến hành họcmôntoán trường THPT,tính khả thi hiệu đề tài Phương pháp nghiên cứu Sử dụng phương pháp nghiên cứu chuyên ngành lí luận phương pháp giảng dạy môntoánhọctập trung vào phương pháp sau: a/ Nghiên cứu lý luận b/ Điều tra quan sát thực tiễn c/ Thực nghiệm sư phạm B NỘI DUNG ĐỀ TÀI Cơ sở lý luận Trong giảng dạy, việc phát huy tính tích cực họcsinh điều quan trọng nội dung đổi phương pháp Để làm điều giáo viên cần đầu tư thời gian, tìm tòi phát vấn đề lạ từ hướng họcsinh đến với chân trời rộng mở Toán học, khơi dạy lòng đam mê Toánhọc em Trong trình dạy học thấy có tậpsáchgiáokhoa nhìn qua thấy đơn giản, chịu khó tìm hiểu khám phá nhiều điều thú vị từ toán Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Trước chưa áp dụng phương pháp vào giảitập SGK hầu hết học sing mà dạy ý giảitập có họcsinh làm cho xong nhiệm vụ Hơn số họcsinh ham chơi chưa thực chịu khó họctập chưa thích thú mônhọc nên việc áp dụng gặp nhiều khó khăn Trên sở đó, phân loại họcsinh yêu cầu mức độ khác thấy có hiệu cao việc áp dụng sáng kiến Sáng kiến kinh nghiệm, biện pháp để giải vấn đề I BỐN BÀITOÁN GỐC Bàitoán ( trang 110,SGK Toán 10 nâng cao, tập 6) 3 Chứng minh a ≥ b ≥ a + b ≥ ab ( a + b ) Lời giải Thật vậy, BĐT tương đương với ( a + b ) ( a − 2ab + b2 ) ≥ ⇔ ( a + b ) ( a − b ) ≥ Là BĐT đúng, đẳng thức xảy a = b Bàitoán 2( trang 110,SGK Toán 10 nâng cao, tập 7b) Chứng minh với hai số thực a, b tùy ý ta có a + b ≥ a 3b + ab3 ( Chứng minh tương tự 1) BàitoánCho số thực không âm a, b Khi dó ta có kết sau a) Kết Nếu ab ≤ 1 + ≤ 2 + a + b + ab b) Kết Nếu ab ≥ Lời giải 1 + ≥ 2 + a + b + ab Sử dụng phép biến đổi đại số, ta có 1 1 + − = − − ÷+ ÷ 2 2 + a + b + ab + a + ab + b + ab ( b − a ) ( ab − 1) b−a a b = − = 2 ÷ + ab + a + b ( + ab ) + a + b 2 ( )( ) Từ biến đổi ta có kết cần chứng minh Đẳng thức xảy a = b ab = BàitoánCho tứ diện ABCD có ba cạnh OA, OB, OC đôi vuông góc Khi hình chiếu H O mặt phẳng ( ABC ) trực tâm tam giác ABC 1 1 = + + 2 OH OA OB OC ( Bài 17 trang 113 ,SGK Hình học 11 Nâng cao) Chứng minh: BC ⊥ ( OAH ) ⇒ AH ⊥ BC tương tự BH ⊥ AC ⇒ H trực tâm tam giác ABC 1 = + Ta có, OK ⊥ BC ⇒ Tam giác OAK vuông, ta 2 OK OB OC 1 1 1 = + ⇒ = + + 2 2 2 OH OK OA OH OA OB OC có A H B O K C II.CÁC HƯỚNG KHAI THÁC Hướng khai thác tổng quát hóa Theo hướng , ta tổng quát toántoán sau: Bàitoán 1.1 Chứng minh a ≥ b ≥ a n+1 + b n+1 ≥ a nb + ab n Với n số nguyên dương Lời giải 2n 2n Thật BĐT tương đương với ( a − b ) ( a − b ) ≥ , BĐT đúng, đẳng thức xảy a = b Bàitoán 2.1 Chứng minh với hai số thưc a, b tùy ý ta có a n + b n ≥ a n −1b + ab n −1 Với n số nguyên dương ( Chứng minh tương tự toán 1.1) Ở toán ta thấy ba cạnh OA, OB, OC đôi vuông góc, ta thay giả thiết hai ba cặp cạnh vuông góc Bàitoán 4.1 Cho tứ diện OABC có OA vuông góc với mặt phẳng ( OBC ) Khi khoảng cách từ O đến mặt phẳng ( ABC ) khoảng cách từ O đến AK ( K hình chiếu O BC ) Đặc biệt tam giác OBC vuông C ta có toánBàitoán 4.2 Cho tứ diện OABC có OA vuông góc với mặt phẳng ( OBC ) , OC ⊥ BC Khi khoảng cách từ O đến mặt phẳng ( ABC ) khoảng cách từ O đến AC Hướng khai thác mức độ nâng cao Với a > 0, b > 0, c > từ toán ta có: a b2 b2 c a2 c2 + ≥ a + b; + ≥ b + c; + ≥ a + c b a c b c a Cộng theo vế BĐT ta đề xuất toánBàitoán 1.2 Cho a, b, c ba số dương Chứng minh a + c2 c2 + b2 b2 + a2 + + ≥ 2( a + b + c) b a c Tiếp tục biến đổi ta có a + c2 c2 + b2 b2 + a2 + + ≥ 2( a + b + c) b a c 1 1 1 1 1 1 ⇔ a + ÷+ b + ÷+ c + ÷ ≥ ( a + b + c ) b c c a a b b+c c+a a +b ⇔ a2 + b2 +c ≥ 2( a + b + c) bc ca ab Với a + b + c = , BĐT tương đương với 1− a 1− b 1− c a2 + b2 +c ≥2 bc ca ab ⇔ a ( − a ) + b3 ( − b ) + c ( − c ) ≥ 2abc Ta tiếp tục đề xuất toán sau Bàitoán 1.3 Cho a, b, c ba số dương thỏa mãn a + b + c = Chứng minh a + b + c ≥ a + b + c + 2abc Bằng cách đặt a = x ; b = y ; c = z ta lại có thêm toán sau 3 4 Bàitoán 1.4 Cho x, y, z ba số dương thỏa mãn điều kiện biểu thức P= x2 − x x2 + x + y + z + y2 − y y2 + y + z + x + x + y + z = Tìm giá trị lớn z2 − z z2 + 23 z + x + y + xyz Tiếp theo xuất phát từ toán 2.1 với n = 1, ta có BĐT quen thuộc a + b ≥ 2ab , với a, b ∈ ¡ Với n = , ta có toán Nếu thay giả thiết a ≠ 0, b ≠ từ toán ta có: a + b4 b4 + c c4 + a4 ≥ ab; 2 ≥ bc; ≥ ca a + b2 b +c c + a2 Cộng theo vế BĐT ta có toán sau: Bàitoán 2.1 Cho a, b, c số thực khác không, chứng minh a + b4 b4 + c4 c4 + a4 + + ≥ ab + bc + ca a + b2 b2 + c2 c2 + a2 Với n = ta có BĐT : a + b6 ≥ a5b + ab5 với a, b ∈ R Tương tự ta có toán sau Bàitoán 2.2 Cho a, b, c số thực khác không, chứng minh a + b6 b6 + c6 c + a + + ≥ ab + bc + ca a + b4 b4 + c4 c4 + a4 Tổng quát toán 2.1 toán 2.2 ta có toán tổng quát Bàitoán 2.3 a , b, c Cho a 2n+ 2n+ +b a + b2n 2n + b 2n+2 n+ +c b + c2n 2n + số c n+2 thực n+2 +a c + a 2n 2n khác không, chứng minh ≥ ab + bc + ca Với n nguyên dương Bàitoán 3.1 Cho a, b ∈ [ 0;1] Chứng minh 1+ a + 1+ b ≤ + ab Lời giải Vì a, b ∈ [ 0;1] nên ab ≤ Sử dụng kết toán kết hợp BĐT CauchySchwarz, ta có 1 + ≤ ( + 1) + ≤ ⇒ Điều cần chứng minh Đẳng ÷ ÷ 2 + a + b + ab + b2 1+ a thức xảy a = b Với kết toán 3.1 ta giải hệ phương trình sau Bàitoán 3.2 Giải hệ phương trình 1 + = 2 1+ y 1+ 2x 1+ y x ( − x ) + y ( − y ) = Lời giải 1 Điều kiện x, y ∈ 0; Với số thực a ≥ 0; b ≥ , ta đặt a = x ; b2 = y 2 x= a b ;y= Từ PT thứ hệ, ta có PT: 2 1+ a + 1+ b = + ab 2 1 Từ điều kiện x, y ∈ 0; , ta có a, b ∈ 0; Sử dụng kết toán 3.1 suy 2 a = b ⇒ x = y thay vào PT thứ hai hệ ta tìm nghiệm hệ phương trình Bàitoán 3.3 Cho x, y, z ba số thực thuộc đoạn [ 1; 4] x ≥ y; x ≥ z Tìm giá trị nhỏ biểu thức P= x y z + + 2x + 3y y + z z + x Lời giải Viết lại biểu thức P dạng y z x 1 + + Trong a = , b = , c = , suy , a > 0; b > 0; c > x y z + 3a + b + c x abc = Lưu ý bc = ≥ nên áp dụng kết toán 3, ta có y 1 + ≥ + b + c + bc Bằng cách đặt t = bc , với điều kiện x, y ∈ [ 1; 4] , x ≥ y ⇒ t ∈ [ 1; 2] P= t2 ; t ∈ [ 1; 2] Bây giờ, việc tìm giá trị nhỏ biểu thức P = + 2t + t + 34 Bàitoán đến ta xét hàm tìm P = 33 Ta thấy với kết đơn giản toán 3, ta giảitoán khó tạochohọcsinh tinh thần họctập cầu tiến, sángtạo nắm vững kết đơn giản Bàitoán 4.3 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a, SA ⊥ ( ABCD ) , SC = a Gọi O = AC ∩ BD O = AC ∩ BD Tính khoảng cách từ O đến mặt phẳng ( SAB ) Phân tích: Thay đổi tên gọi mặt phẳng đáy để tạo tứ diện vuông đỉnh O Bằng cách lấy I trung điểm SA OI , OA, OB đôi vuông góc Khoảng cách từ O đến mặt phẳng ( SAB ) khoảng cách từ O đến mặt phẳng ( IAB ) tính theo toán S I C B O D A Lời giải Gọi I trung điểm SA OI đường trung bình tam giác SCA nên OI a song song với SC OI = SC = Từ OI ⊥ ( ABCD ) 2 Gọi d khoảng cách từ O đến ( SAB ) d khoảng cách từ O đến ( IAB ) Vì tứ diện OIAB có OA, OB, OI đôi vuông góc nên theo toán , ta có 1 1 2 = 2+ + = 2+ 2+ = 2 2 d OI OA OB a a a a a Vậy d = Nếu quy khoảng cách từ O đến mặt phẳng ( SAB ) khoảng cách từ C đến mặt phẳng ( SAB ) , khoảng cách tính theo toán 4.2 S L C D Lời giải Ta có d ( O; ( SAB ) ) d ( C ; ( SAB ) ) ( SAB ) ⊥ ( SBC ) Hạ CL ⊥ SB ( L ∈ SB ) = B O A OA = Vì AB ⊥ SC , AB ⊥ CB nên AB ⊥ ( SBC ) Do CA CL ⊥ ( SAB ) ⇒ d ( C ; ( SAB ) ) = CL Ta có 10 1 a a = + = ⇒ CL = ⇒ d ( O; ( SAB ) ) = 2 CL CS CB 2a Bàitoán 4.4 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B , AB = BC = 2a Hai mặt phẳng ( SAB ) ( SAC ) vuông góc với mặt phẳng ( ABC ) Gọi M trung điểm AB ; mặt phẳng qua SM song song với BC , cắt AC N Biết góc hai mặt phẳng ( SBC ) ( ABC ) 600 Tính khoảng cách hai đường thẳng AB SN theo a Phân tích: Để tính khoảng cách hai đường thẳng AB SN ta quy tính khoảng cách đường thẳng mặt phẳng song song cách mặt phẳng ( ABC ) kẻ đường thẳng ∆ qua N song song với AB Khi d ( AB; SN ) = d ( AB; mp ( S ; ∆ ) ) = d ( A; mp ( S ; ∆ ) ) Vì SA ⊥ ( ABC ) ( hay mp ( A; ∆ ) ) nên theo cách xác định Bàitoán 4.1, hạ AQ ⊥ ∆ ( Q ∈ ∆ ) , AH ⊥ SQ ( H ∈ SQ ) d ( AB; SN ) = d ( A; mp ( S , ∆ ) ) = AH Lời giải Từ giả thiết ta có SA ⊥ mp ( ABC ) Mà AB ⊥ BC nên SB ⊥ BC , góc hai mặt phẳng ( SBC ) ( ABC ) · · SBA ⇒ SBA = 600 ⇒ SA = AB tan 600 = 2a Suy MN song song với BC , nên N trung điểm AC Gọi ∆ đường thẳng qua N song song với AB Hạ AQ ⊥ ∆ ( Q ∈ ∆ ) Ta có AB / / ( SQN ) ⇒ d ( AB; SN ) = d ( AB; ( SQN ) ) = d ( A; ( SQN ) ) Hạ AH ⊥ SQ ( H ∈ SQ ) Vì QN ⊥ AQ, QN ⊥ SA ⇒ QN ⊥ ( SAQ ) ⇒ ( SQN ) ⊥ ( SAQ ) ⇒ AH ⊥ ( SQN ) Do đó, d ( AB; SN ) = AH 11 S H Q A C N M B 1 13 = 2+ = 2 AH SA AQ 12a Vì AQ = MN = BC = a nên Vậy d ( AB; SN ) = AH = 2a 39 13 Hiệu sáng kiến kinh nghiệm a Đối với hoạt động giáo dục Tôi áp dụng giải pháp vào hai lớp giảng dạy so sánh mức độ tập trung hứng thú họctập TT Lớp 10A5 12B2 Sĩ số 41 39 Trước áp dụng 63,4% 71,8% Sau áp dụng 92,7% 94,9% Điều cho thấy áp dụng sáng kiến vào giảng dạy hiệu giáo dục nâng lên rõ rệt Họcsinh chủ động hơn, tích cực đam mê b Đối với thân 12 Tôi tự rút cho niềm đam mê tìm tòi, tìm định hướng chohọcsinh điều mới, giúp em chủ động chiếm lính kiến thức hứng thú họctập c Đối với đồng nghiệp nhà trường Có nhiều giải pháp tương tự đưa nhằm gâyhứng thú tích cực chohọc sinh, khai thác có chiều sâu toán, áp dụng toán thực tế, áp dụng kiến thức liên môn…, hiệu giảng dạy nâng lên C KẾT LUẬN Kết luận - Qua số vấn đề trình bày việc đào sâu khai thác, tìm hiểu phát triển toán đơn giản vận dụng để xây dựng, làm công cụ để giảitoán khó phương pháp để hướng họcsinhtập trung hơn, đam mê tích cực họctập - Với số giải pháp mà nêu rát khiêm tốn biện pháp hữu hiệu mà cần có nhiều biện pháp khác để thực yêu cầu đổi phương pháp giảng dạy theo yêu cầu - Tôi tin tưởng với nhiều biện pháp đổi giảng dạy khác,chắc chắn môntoán trường nói riêng toàn Tỉnh nói chung ngày có chất lượng lên.Góp phần cho phát triển giáo dục Tỉnh nhà 13 2.Kiến nghị - Đối với ngành cần tổ chức giao lưu học hỏi nhiều phương pháp giảng dạy gâyhứng thú tập trung họctậpchohọcsinh - Cần tập trung nhiều thời gian cho công tác đổi phương pháp giảng dạy D TÀI LIỆU THAM KHẢO Sáchgiáokhoamôn đại số 10 chương trình nâng cao Sáchgiáokhoamôn hình học 11 chương trình nâng cao Sáchtập đại số 10 chương trình nâng cao Sáchtập hình học 11 chương trình nâng cao Các toán bất đẳng thức ( Phan Huy Khải) Tạp chí Toánhọc tuổi trẻ Hướng dẫn luyện thi THPT quốc gia ( Trần Phương) Mạng internet 14 Xác nhận thủ trưởng đơn vị Thanh hóa, ngày 18/05/2016 Tôi xin cam đoan SKKN viết không chép nội dung người khác Vương Đình Sơn 15 SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPTĐINH CHƯƠNG DƯƠNG SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI MỘTCÁCHGÂYHỨNGTHÚ,SÁNGTẠOCHOHỌCSINHTHPTQUAVIỆCGIẢIBÀITẬPTRONGSÁCHGIÁOKHOA Người thực hiện: Vương Đình Sơn Chức vụ: TTCM - Giáo viên Đơn vị công tác: Trường THPT Đinh Chương Dương SKKN thuộc lĩnh vực : Toánhọc ( THANH HOÁ NĂM 2016 16 ... GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT INH CHƯƠNG DƯƠNG SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI MỘT CÁCH GÂY HỨNG THÚ, SÁNG TẠO CHO HỌC SINH THPT QUA VIỆC GIẢI BÀI TẬP TRONG SÁCH GIÁO KHOA Người thực... dạy gây hứng thú tập trung học tập cho học sinh - Cần tập trung nhiều thời gian cho công tác đổi phương pháp giảng dạy D TÀI LIỆU THAM KHẢO Sách giáo khoa môn đại số 10 chương trình nâng cao Sách. .. sống đặc biệt để tạo hứng thú học tập môn toán vô quan trọng Nội dung tập sách giáo khoa đơn giản mức độ kiến thức không cao Tuy nhiên để học sinh có niềm đa mê tìm tòi sáng tạo người thầy cần