1. Trang chủ
  2. » Giáo Dục - Đào Tạo

50 bai tap ve bat dang thuc toán 10

15 297 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 444,77 KB

Nội dung

Gia sư Thành Được www.daythem.edu.vn 50 Bài tập bất đẳng thức: a 8a a 24 a 10 Giải: S  a    (  )  2  a 9 a 9 a Bài 2: Cho a  , tìm giá trị nhỏ S  a  a 6a a a 12 a a 12 Giải: S  a    (   )   33    a 8 a 8 a 4 Bài 3: Cho a,b >0 a  b  , tìm giá trị nhỏ S  ab  ab 1 15 15 17 Giải: S  ab   (ab  )  ab   ab 16ab 16ab 16ab  ab 16     Bài 4: Cho a,b,c>0 a  b  c  Tìm giá trị nhỏ 1 S  a   b2   c  b c a Giải: Cách 1: Bài 1: Cho a  , tìm giá trị nhỏ S  a  Cách 2: S  a2  1  b2   c2  2 b c a (12  42 )(a  1 1 )  (1.a  ) 2 a   (a  ) b b b b 17 Tương tự 1 1 b2   (b  ); c   (c  ) c c a a 17 17 Do đó: Gia sư Thành Được S www.daythem.edu.vn 4 36 (a  b  c    )  (a  b  c  ) a b c a bc 17 17  17  135 (a  b  c  4(a  b  c) )  4(a  b  c)   17   Bài 5: Cho x,y,z ba số thực dương x  y  z  Chứng minh rằng:  x2  1  y   z   82 y z x Giải: 1 1 (1.x  )  (12  92 )( x  )  x   (x  ) y y y y 82 1 1  ( y  ); z   (z  ) z z x x 82 82 9 81 S (x  y  z    )  (x  y  z  ) x y z x yz 82 82 TT : y    80  ( x  y  z  x  y  z )  x  y  z   82 82   Bài 6: Cho a,b,c>0 a  2b  3c  20 Tìm giá trị nhỏ S  abc   a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 16 12   18   16   4S  4a  4b  4c     a  2b  3c   3a     2b     c    a b c a  b  c   20  3.2.2  2.2.3  2.4  52  S  13 1 Bài 7: Cho x,y,z>    Tìm giá trị lớn x y z 1 P   2x  y  z x  y  z x  y  2z Giải: Ta có 1 1   ;   x y x y y z yz 1 1 4 16 1 1 1              x y y z x  y y  z x  2y  z x  y  z 16  x y z  Gia sư Thành Được www.daythem.edu.vn TT : 1 2 1 1 1 2     ;      x  y  z 16  x y z  x  y  z 16  x y z  S 4 4     1 16  x y z  Bài x x x  12   15   20  Chứng minh với x  R , ta có          3x  x  5x 5 4   Giải: x x x x x x x x  12   15   12   15   15   12  x  20  x  20  x            2.3 ;       2.5 ;       2.4 5 4 5 4   4   5 Cộng vế tương ứng => đpcm Bài 9: Cho x,y,z>0 x+y+z =6 Chứng minh 8x  y  8z  4x1  y 1  4z 1 Giải: Dự đoán x=y=z = 8x.8x  64x  4x nên : 8x  8x  82  3 8x.8x.82  12.4 x ; y  y  82  3 y.8 y.82  12.4 y ; 8z  8z  82  3 8z.8z.82  12.4 z 8x  y  8z  3 8x.8 y.8z  3 82.82.82  192 Cộng kết => đpcm Bài 10: Cho x,y,z>0 xyz = Hãy chứng minh  x3  y  y3  z3  z  x3   3 xy yz zx Giải: x3  y3  xy  x  y    x3  y3  xyz  xy  x  y   xy  x  y  z   3xy xyz  3xy  x3  y 3xy   xy xy yz  y3  z3 ;   xy yz yz  1  S  3   3  xy yz zx   x2 y z Bài 11 3 3  z  x3 3zx ;   yz zx zx zx Gia sư Thành Được www.daythem.edu.vn Cho x, y hai số thực không âm thay đổi Tìm giá trị lớn giá trị nhỏ  x  y 1  xy  biểu thức P  2 1  x  1  y  Giải:  x  y   xy    x  y 1  xy    x  y 1  xy       1  P  P 2 2 1  x  1  y  1  x  1  y   x  y   xy  4 Khi cho x=0 y= P = -1/4 Khi cho x=1 y = P = 1/4 KL: Khi dấu = xảy ra.hoctoancapba.com Bài 12 a b3 c Cho a,b,c >0 Chứng minh rằng:    ab  bc  ca b c a Giải: a3 b3 c3 a b4 c (a  b2  c )2  ab  bc  ac  Cách 1:         ab  bc  ac b c a ab bc ca ab  bc  ac ab  bc  ac a3 b3 c3 Cách 2:  ab  2a ;  bc  2b2 ;  ca  2a b c a a b3 c    2(a  b2  c )  ab  bc  ac  ab  bc  ac b c a Bài 13 Cho x,y >0 x  y  Tìm giá trị nhỏ A  3x   y  4x y2 Giải: Dự đoán x=y=2 3x   y 3x 1 x  y y  x y A      y         4x y x y 4    x 4  y 1 Bài 14: Cho x,y>0 x+y = Chứng minh P    42 3 x y xy Giải: Ta có  x  y  x3  y  3xy(x+y)  x3  y  3xy=1 x3  y  3xy x3  y  3xy 3xy x3  y      42 x3  y xy x3  y xy 1 1 Bài 15: Cho x,y,z >0    Chứng minh xyz  1 x 1 y 1 z Giải: P= Gia sư Thành Được www.daythem.edu.vn 1 1 y z  2   1 1   2 1 x 1 y 1 z 1 y 1 z 1 y 1 z xz 2 ; 2 1 y 1  x 1  z   z Nhân vế BĐT => đpcm TT : yz 1  y 1  z  xy 1  x 1  y  Bài 16: Cho x,y,z>0 x+y+z = Tìm giá trị lớn S  x y z   x 1 y 1 z 1 Giải:  x y z 1  9    3    3    3 x 1 y 1 z 1 x y  z 3 4  x 1 y 1 z 1  Bài 17: 4a 5b2 3c Cho a,b,c >1 Chứng minh rằng:    48 a 1 b 1 c 1 Giải: 4a  a  1  4    a  1    a  1      16 a 1 a 1 a 1 a 1 5b 3c   b  1   10  20;   c  1    12 dpcm b 1 b 1 c 1 c 1 Bài 18 Cho a,b,c >0, chứng ming : 1 1      3    a b c  a  2b b  2c c  2a  Giải: 1 1 1 cộng ba bất đẳng thức =>đpcm    ;    ;    a b b a  2b b c c b  2c c a a c  2a Bài 19 Với a,b,c >0 chứng minh rằng: 36    a b c abc Giải: S 1   3 36     a b c a bc a bc Bài 20: Cho a,b,c,d>0 chứng minh : 1 16 64     a b c d a bcd Giải: 1 16 16 16 64    ;   a b c a bc a bc d a b c d Gia sư Thành Được www.daythem.edu.vn Cần nhớ: a b2 c2  a  b  c     x y z x yz Bài 21 Với a,b,c>0 chứng minh rằng:      4    a b c  ab bc ca  Giải 1 3 1 2 1      ;      ;   a b a b a b a b b c b c b c bc c a c a Bài 22 Với a,b,c độ dài ba cạnh tam giác , p nửa chu vi tam giác 1 1 1 Chứng minh    2    p a p b p c a b c Giải: 1 2      p  a p  b p  c a  b  c a  b  c a  b  c 1 1 1 1 1       2    a  b  c a  b  c a  b  c a  b  c a  b  c a  b  c a b c Bài 23 x2 y2 z2 Cho x,y,z>0 x  y  x  Tìm giá trị nhỏ P    yz zx x y hoctoancapba.com Giải:   x  y  z   x  y  z   x2 y2 z2    Cách1: P  y  z z  x x  y 2 x  y  z 2 Cách 2: x2 yz y2 zx z2 x y   x;   y;  z yz zx x y x yz x yz  P x yx    2 2 Bài 24 Cho số thực dương x,y,z thỏa mãn x+2y+3z =18 Chứng minh y  3z  3z  x  x  y  51    1 x 1 y  3z Giải: Gia sư Thành Được www.daythem.edu.vn y  3z  z  x  x  y    1 x 1 y  3z y  3z  3z  x  x  2y   1 1 1 1 x 1 y  3z  1    x  y  3z      3    24 x  y  3z    x  y  3z  51  24   21 Bài 25 Chứng minh bất đẳng thức: a  b2   ab  a  b Giải: Nhân hai vế với 2, đưa tổng cuuả ba bình phương Bài 26 Chứng minh a,b,c độ dài ba cạnh tam giác có p nửa chu vi p  a  p  b  p  c  3p Giải: Bu- nhi -a ta có : p  a  p  b  p  c  (12  12  12 )( p  a  p  b  p  c)  3(3 p  p)  p Bài 27 1 Cho hai số a, b thỏa mãn : a  1; b  Tìm giá trị nhỏ tổng A  a   b  a b 1 15b  b  15.4 17 21 Giải: a   2; b          A  a b 16  16 b  16 4 Bài 28 Chứng minh a  b4  a3b  ab3 Giải:  a 2   b2 2  (12  12 )   a  b2 2   a  b2  a  b2   2ab  a  b2   a  b  a3b  ab3   Bài 29 Tìm giá trị nhỏ biểu thức sau: ( x  y  1)2 xy  y  x A  (Với x; y số thực dương) xy  y  x ( x  y  1)2 Giải: ( x  y  1)2  a; a   A  a  Có Đặt xy  y  x a Aa 8a a a 10 10   (  )       A  a 9 a 9 a 3 3 Gia sư Thành Được www.daythem.edu.vn Bài 30 Cho ba số thực a, b, c đôi phân biệt Chứng minh a2 b2 c2   2 (b  c)2 (c  a) (a  b) Giải: a b b c c a    1 (b  c) (c  a) (c  a) (a  b) (a  b) (b  c)  a b c  VT      0  (b  c) (c  a) (a  b)  (Không cần dấu = xảy hoặ cần cho a= 1,b=0 => c=-1 xảy dấu =) Bài 31 Cho số dương a; b; c thoả mãn a + b + c  Chứng ming 2009   670 2 a b c ab  bc  ca Giải: 2009  2 a  b  c ab  bc  ca 1 2007 2007        670 2 2 a  b  c ab  bc  ca ab  bc  ca ab  bc  ca  a  b  c  a  b  c Bài 32: Cho a, b, c số thực dương thay đổi thỏa mãn: a  b  c  Tìm giá trị nhỏ biểu thức P  a  b2  c  ab  bc  ca a 2b  b2c  c 2a Giải: 3(a2 + b2 + c2) = (a + b + c)(a2 + b2 + c2) = a3 + b3 + c3 + a2b + b2c + c2a + ab2 + bc2 + ca2 Mà a3 + ab2  2a2b ;b3 + bc2  2b2c;c3 + ca2  2c2a Suy 3(a2 + b2 + c2)  3(a2b + b2c + c2a) >  (a  b2  c ) ab  bc  ca 2 Pa b c  Suy P  a  b  c  2(a  b2  c ) a  b2  c 2 2 t = a2 + b2 + c2, với t  Suy P  t  9t t t      3    P  2t 2t 2 2 a=b=c=1 Bài 33 Ch x,y,z số thực dương thỏa mãn x+y+z = tìm giá trị nhỏ Gia sư Thành Được www.daythem.edu.vn 1   16 x y z Giải:  1 1 1  y x   z x   z y  21 P=     x  y  z          16x y z  16x y z   16 x y   16 x z   y z  16 z y z x y x =>P  49/16   z=2y   z=4x;   có =khi y=2x; 4y z 16 x z 16 x y Min P = 49/16 với x = 1/7; y = 2/7; z = 4/7 Bài 34 P=   23 x y Tìm giá trị nhỏ biểu thức: B  8x   18y  x y Cho hai số thực dương x, y thỏa mãn: Giải: B  8x   2  2 4 5  18y    8x    18y         12  23  43 x y  x  y x y 1 1  3 1 1  3 Dấu xảy  x; y    ;  Vậy Min B 43  x; y    ;  Bài 35 Cho x, y z ba số thực thuộc đoạn [1;2] có tổng không vượt Chứng minh x2 + y2 + z2  Gải:  x   x   x    (x  1)(x  2)   x  3x  Tương tự y  3y  z  3z   x2 + y2 + z2  3( x + y +z) –  – = Bài 36 Cho a,b,c số thuộc  1; 2 thỏa mãn điều kiện a2+b2+c2 = Chứng minh a bc  Giải:  a  1 a     a  a   0; b2  b   0; c  c    a  b  c  a  b2  c   Bài 37 Cho số dương a,b,c thỏa mãn a  b  c  Chứng minh rằng: 1 97 a   b2   c   b c a Giải: Gia sư Thành Được www.daythem.edu.vn   81      1.a    1   a    a    a  ; b  16  b  b 4b  97   cộng vế lại     b   b  ; c   c   c 4c  a 4a  97  97  Bài 38 Cho tam giác có ba cạnh a,b,c chu vi 2p Chứng minh p p p   9 p a p b p c Giải: p p p 1 9    hay     p a p b p c p  a p b p c p a  p b  p c p Bài 39 Cho a,b,c độ dài ba cạnh tam giác có chu vi Chứng minh rằng: 3(a  b2  c )  2abc  52 Giải: abc  (a  b  c)(a  b  c)(a  b  c)  (6  2a)   2b   2c   abc  24   ab  bc  ac  2 16  36  (a  b  c )   2abc  48    (a  b  c )  2abc  48 (1)     a  2  b  2   c  2 2 0 a  b2  c2  (2) (1)and(2)  dpcm Có chứng minh 3(a  b2  c )  2abc  18 hay không? Bài 40 Cho a, b, c độ dài cạnh tam giác có chu vi Tìm giá trị nhỏ 3  ( a  bc )1  a b c biểu thức P Giải: 2 2 2  a  ( b  c )  ( a  b  c ) ( a b  c )  b  ( c  a )  ( b  c  a ) ( b c  a ) Có a (1) , b (2) 2 c  ca  (  b )  ( c  a  b ) ( c a  b ) (3) Dấu „=‟ xảy abc Do a,b,c độ dài cạnh tam giác nên vế (1), (2), (3) dương Nhân vế với vế (1), b ca  ( b  c ) ( b c  a ) ( c a  b ) (2), (3) ta có : a (*) hoctoancapba.com  a b c  (  a ) (  b ) (  c )  ( a  b  ca )  ( b  b c  c a )  90 a b c  a  b  c  Từ nên (*)   a b c  ( a b  b c  c a )   a b c  ( a b  b c  c a )   (*) 3 3  b  c  () a  b  c  () a  b  c ( a b  b c  c a )  a b c   ( a b  b c  c a )  a b c Ta có a 10 Gia sư Thành Được www.daythem.edu.vn 3 ( a  b  c )  a b c  a b c  ( a b  b c  c a )   a b c  ( a b  b c  c a )    Từ (**) 3 ( a  b  c )  a b c  (  )   Áp dụng (*) vào (**) cho ta Dấu “=” xảy abc Từ giá trị nhỏ P đạt abc Bài 41 Cho a, b, c độ dài cạnh tam giác có chu vi Chứng minh  a3  b3  c3  3abc  Giải: *P  a  b3  c3  3abc Ta có a  b3  c3  3abc  (a  b  c)(a  b  c  ab  bc  ac )  a  b3  c3  3abc  (a  b  c  ab  bc  ac ) (1) có abc  (a  b  c)(a  b  c)(a  b  c )  (1  2a)(1  2b)(1  2c)  2   ab  bc  ca  (2) 3 (1)and(2)  a  b3  c3  3abc  a  b  c    ab  bc  ca  3 1  4(ab  bc  ca )  8abc  6abc  mà ab  bc  ca    a  b2  c2 2 P1 a   b2  c2  1  1  1 1 1  2 a    b    c     a  b  c   P    3  3  3 6  *P  a  b3  c3  3abc abc  (a  b  c)(a  b  c)(a  b  c)  (1  2a)(1  2b)(1  2c)  1  4(ab  bc  ca)  8abc   ab  bc  ca)  2abc  (3) P  a  b3  c3  3abc  (a  b  c)(a  b  c  ab  bc  ac)  6abc  a  b  c  ab  bc  ac  6abc   a  b  c    ab  bc  ca   6abc 1    ab  bc  ca  2abc     4 11 Gia sư Thành Được www.daythem.edu.vn Bài 42 Cho ba số dưỡng,y,z thỏa mãn x+y+z =6 Chứng minh rằng: x  y  z  xy  yz  zx  xyz  Giải: Chứng minh xyz    x  y  z  x  y  z  x  y  z   (6  x)(6  y )(6  z )  216  72( x  y  z )  24( xy  yz  zx)  8xyz  xyz  24  ( xy  yz  zx) (1) mà  x  y  z    x  y  z  2xy  yz  2xz   x  y  z  xy  yz  xz  36  3xy  yz  3xz (2) Nên xyz  x  y  z  xy  yz  xz   24  ( xy  yz  zx)+ 36  3xy  yz  3xz  xyz  x  y  z  xy  yz  xz   12  ( xy  yz  zx) mà  x  y  z   3( xy  yz  zx)  x  y  z 36  xyz  x  y  z  xy  yz  xz   12   12  8 3 2 2 Bài 43 Cho a  1342; b  1342 Chứng minh a2  b2  ab  2013  a  b  Dấu đẳng thức xảy nào? Giải: Ta sử dụng ba kết sau:  a 1342  b  1342 2  0;  a  1342 b  1342  0; a  1342  b  1342  Thật vậy: (1)  a  1342    b  1342    a  b2  2.1342. a  b   2.13422  (2)  a  1342  b  1342    ab  1342a  1342b  13422   a  b  2.1342  a  b   2.13422  ab  1342a  1342b  13422   a  b  ab  3.1342  a  b   3.13422  2.2013  a  b   3.13422  2013  a  b   2013  a  b   2.2013.1342  2013  a  b   2013  a  b  1342  1342   2013. a  b  2 Bài 44 Tìm giá trị nhỏ biểu thức: A   x  1   x  3   x  1  x  3 4 2 12 Gia sư Thành Được www.daythem.edu.vn Giải: Cách 1: Cách : A   x  1   x  3   x  1  x  3 4 2 2 2 A   x  1   x  3    x  1  x  3   A   2x  8x  10    x  4x   A   2( x  2)     ( x  2)  1 2 A  4( x  2)  8( x  2)   4( x  2)  8( x  2)  A  8( x  2)   Bài 45: Cho a,b,c số thực dương thỏa mãn a+b+c=1 Chứng minh rằng: ab bc ca    c 1 a 1 b 1 Giải: 13 Gia sư Thành Được www.daythem.edu.vn Bài 46 Cho x,y,z ba số thực dương thỏa mãn điều kiện xyz=1 Chứng minh rằng: 1 x  y  1  1 3  y  z  z  x3 Giải: x  y  2xy   x  y   x  y   2xy  x  y   x  y  xy  x  y    x  y  xy  x  y  z    1 x  y 3  1 x  y 3  xy  x  y  z  z x y ;  ;   dpcm 3 3 x  y  z 1 y  z x  y  z 1 z  x x y z Bài 47 Cho a,b số thực dương Chứng minh :  a  b  ab  2a b  2b a 2  ab 1  1      a  b   a  b     a  b    a     b     ab  a  b   2a b  2b a 2 4     Giải:  a  b Bài 48 Cho ba số thực a,b,c thỏa mãn điều kiện: 1  8a  1  8b  1  8c3 1 Giải: 14 Gia sư Thành Được 1  8a ;   www.daythem.edu.vn  2a  1  4a  2a  1     2 2a   4a  2a  4a  2a  2c  1  8c 1  VT     1 2a  2b  2c  2a   2b   2c  1  8b 2b  ; 2 Bài 49 Với a,b,c ba số thực dương Chứng minh : a b3 c    a  b2  c b c a Giải: Cách 1: 2 a  b  c  a  b  c   a b3 c a b c  a  b  c          a  b2  c b c a ab bc ca ab  bc  ca ab  bc  ca Cách a3 b3 c3  ab  2a ;  bc  2b2 ;  ca  2c  VT   a  b2  c   (ab  bc  ca)  a  b  c b c a Bài 50 Cho x,y,z ba số thực dương thỏa mãn xyz = Chứng minh rằng: x2 y2 z2    y 1 z 1 x 1 Giải: x2 y 1 y2 z 1 z2 x 1 3 3   x;   y;   z  VT   x  y  z      y 1 z 1 x 1 4 4 15 ... xy  y  x ( x  y  1)2 Giải: ( x  y  1)2  a; a   A  a  Có Đặt xy  y  x a Aa 8a a a 10 10   (  )       A  a 9 a 9 a 3 3 Gia sư Thành Được www.daythem.edu.vn Bài 30 Cho ba... 4a  a  1  4    a  1    a  1      16 a 1 a 1 a 1 a 1 5b 3c   b  1   10  20;   c  1    12 dpcm b 1 b 1 c 1 c 1 Bài 18 Cho a,b,c >0, chứng ming : 1 1  ... 8z  82  3 8z.8z.82  12.4 z 8x  y  8z  3 8x.8 y.8z  3 82.82.82  192 Cộng kết => đpcm Bài 10: Cho x,y,z>0 xyz = Hãy chứng minh  x3  y  y3  z3  z  x3   3 xy yz zx Giải: x3  y3 

Ngày đăng: 27/08/2017, 09:05

TỪ KHÓA LIÊN QUAN

w