1. Trang chủ
  2. » Giáo án - Bài giảng

50 bài tập về bất đẳng thức

12 560 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 289,4 KB

Nội dung

Gia sư Thành Được www.daythem.edu.vn 50 Bài tập bất đẳng thức: Bài 1: Cho a  , tìm giá trị nhỏ S  a  Giải: S  a  a 8a a 24 a 10  (  ) 2  a 9 a 9 a a2 6a a a 12 a a 12  (   )   33    Giải: S  a   a 8 a 8 a 4 Bài 3: Cho a,b >0 a  b  , tìm giá trị nhỏ S  ab  ab 1 15 15 17 Giải: S  ab   (ab  )  ab   ab 16ab 16ab 16ab  ab 16     1 Bài 4: Cho a,b,c>0 a  b  c  Tìm giá trị nhỏ S  a   b   c  b c a Giải: Cách 1: Bài 2: Cho a  , tìm giá trị nhỏ S  a  Cách 2: S  a2  1  b2   c2  2 b c a (12  42 )(a  1 1 )  (1.a  ) 2 a   (a  ) b b b b 17 Tương tự 1 1 b2   (b  ); c   (c  ) c c a a 17 17 Do đó: 4 36 S (a  b  c    )  (a  b  c  ) a b c a bc 17 17  17  135 (a  b  c  4(a  b  c) )  4(a  b  c)   17   Bài 5: Cho x,y,z ba số thực dương x  y  z  Chứng minh rằng:  Gia sư Thành Được x2  www.daythem.edu.vn 1  y   z   82 y z x Giải: 1 1 (1.x  )  (12  92 )( x  )  x   (x  ) y y y y 82 1 1  ( y  ); z   (z  ) z z x x 82 82 9 81 S (x  y  z    )  (x  y  z  ) x y z x yz 82 82 TT : y    80  ( x  y  z  x  y  z )  x  y  z   82 82   Bài 6: Cho a,b,c>0 a  2b  3c  20 Tìm giá trị nhỏ S  a  b  c    a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 16 12   18   16   4S  4a  4b  4c     a  2b  3c   3a     2b     c    a b c a  b  c   20  3.2.2  2.2.3  2.4  52  S  13 1 1 1   Bài 7: Cho x,y,z>    Tìm giá trị lớn P  2x  y  z x  y  z x  y  2z x y z Giải: Ta có 1 1 1 1 4 16 1 1 1   ;                x y x y y z yz x y y z x  y y  z x  2y  z x  y  z 16  x y z  TT : 1 2 1 1 1 2     ;      x  y  z 16  x y z  x  y  z 16  x y z  4 4     1 16  x y z  Bài S x x x  12   15   20  Chứng minh với x  R , ta có          3x  x  5x 5 4   Giải: x x x x x x x x  12   15   12   15   15   12  x  20  x  20  x            2.3 ;       2.5 ;       2.4  5  4  5  4    4    5 Cộng vế tương ứng => đpcm Bài 9: Cho x,y,z>0 x+y+z =6 Chứng minh 8x  y  8z  4x 1  y 1  4z 1 Giải: Dự đoán x=y=z = 8x.8x  64 x  x nên : Gia sư Thành Được www.daythem.edu.vn 8x  8x  82  3 x.8 x.82  12.4 x ; y  y  82  3 y.8 y.82  12.4 y ; 8z  8z  82  3 z.8 z.82  12.4 z 8x  y  8z  3 x.8 y.8z  3 82.82.82  192 Cộng kết => đpcm Bài 10: Cho x,y,z>0 xyz = Hãy chứng minh  x3  y  y3  z3  z  x3   3 xy yz zx Giải: x  y  xy  x  y    x  y  xyz  xy  x  y   xy  x  y  z   3xy xyz  3xy  x3  y 3xy   xy xy yz  y3  z3 ;   xy yz yz  1  S  3   3  xy yz zx   x y2 z2  z  x3 zx ;   yz zx zx zx 3 Bài 11 Cho x, y hai số thực không âm thay đổi Tìm giá trị lớn giá trị nhỏ biểu thức  x  y 1  xy  P 2 1  x  1  y  Giải:  x  y   xy    x  y 1  xy    x  y 1  xy       1  P  P  2 2 1  x  1  y  1  x  1  y   x  y   xy  4 Khi cho x=0 y= P = -1/4 Khi cho x=1 y = P = 1/4 KL: Khi dấu = xảy Bài 12 Cho a,b,c >0 Chứng minh rằng: a b3 c    ab  bc  ca b c a Giải: a3 b3 c3 a b c (a  b  c )2  ab  bc  ac          ab  bc  ac b c a ab bc ca ab  bc  ac ab  bc  ac 3 a3 b c  ab  2a ;  bc  2b ;  ca  2a Cách 2: b c a Cách 1: a b3 c    2(a  b  c )  ab  bc  ac  ab  bc  ac b c a 3x   y  Bài 13 Cho x,y >0 x  y  Tìm giá trị nhỏ A  4x y2 Giải: Dự đoán x=y=2 Gia sư Thành Được www.daythem.edu.vn 3x   y 3x 1 x  y y  x y A      y         4x y x y 4    x 4  y 1   42 Bài 14: Cho x,y>0 x+y = Chứng minh P  3 x y xy Giải: Ta có  x  y  x  y  3xy(x+y)  x  y  3xy=1 x3  y  3xy x3  y  3xy 3xy x3  y      42 x3  y xy x3  y xy 1 1    Chứng minh xyz  Bài 15: Cho x,y,z >0 1 x 1 y 1 z Giải: 1 1 y z yz  2   1 1   2 1 x 1 y 1 z 1 y 1 z 1 y 1 z 1  y 1  z  P= TT : 2 1 y xz ; 2 1  x 1  z   z xy 1  x 1  y  Nhân vế BĐT => đpcm Bài 16: Cho x,y,z>0 x+y+z = Tìm giá trị lớn S  Giải: S  x y z   x 1 y 1 z 1  x y z 1  9    3    3    3 x 1 y 1 z 1 x y z 3 4  x 1 y 1 z 1  Bài 17: Cho a,b,c >1 Chứng minh rằng: 4a 5b 3c    48 a 1 b 1 c 1 Giải: 4a  a  1  4    a  1    a  1      16 a 1 a 1 a 1 a 1 5b 3c   b  1   10  20;   c  1    12 dpcm b 1 b 1 c 1 c 1 Bài 18 Cho a,b,c >0, chứng ming : 1 1      3    a b c  a  2b b  2c c  2a  Giải: 1 1 1    ;    ;    cộng ba bất đẳng thức =>đpcm a b b a  2b b c c b  2c c a a c  2a Bài 19 Với a,b,c >0 chứng minh rằng: 36    a b c abc 1   3 36     Giải: a b c a bc abc Bài 20: Cho a,b,c,d>0 chứng minh : Gia sư Thành Được www.daythem.edu.vn 1 16 64     a b c d a bcd 1 16 16 16 64 ;   Giải:    a b c a bc a bc d a bcd Cần nhớ: a b2 c2  a  b  c     x y z x yz Bài 21 Với a,b,c>0 chứng minh rằng:      4    a b c  a b bc ca  Giải 1 3 1 2 1      ;      ;   a b ab a b ab b c bc b c bc c a ca Bài 22 Với a,b,c độ dài ba cạnh tam giác , p nửa chu vi tam giác 1 1 1 Chứng minh    2    p a p b p c a b c Giải: 1 2      p  a p  b p  c a  b  c a  b  c a  b  c 1 1 1 1 1       2    a  b  c a  b  c a  b  c a  b  c a  b  c a  b  c a b c Bài 23 x2 y2 z2   Cho x,y,z>0 x  y  x  Tìm giá trị nhỏ P  yz zx x y  Giải:  x  y  z   x  y  z   x2 y2 z2    Cách1: P  y  z z  x x  y 2 x  y  z 2 Cách 2: x2 yz y2 zx z2 x y   x;   y;  z yz zx x y x yz x yz  P  x y x    2 2 Bài 24 Cho số thực dương x,y,z thỏa mãn x+2y+3z =18 Chứng minh y  3z  z  x  x  y  51    1 x 1 y  3z Giải: Gia sư Thành Được www.daythem.edu.vn y  3z  3z  x  x  y    1 x 1 y  3z y  3z  3z  x  x  2y   1 1 1 1 x 1 y  3z  1    x  y  3z      3    24 x  y  3z    x  y  3z  51  24   21 Bài 25 Chứng minh bất đẳng thức: a  b2   ab  a  b Giải: Nhân hai vế với 2, đưa tổng cuuả ba bình phương Bài 26 Chứng minh a,b,c độ dài ba cạnh tam giác có p nửa chu vi p  a  p  b  p  c  3p Giải: Bu- nhi -a ta có : p  a  p  b  p  c  (12  12  12 )( p  a  p  b  p  c )  3(3 p  p )  p Bài 27 1 Cho hai số a, b thỏa mãn : a  1; b  Tìm giá trị nhỏ tổng A  a   b  a b 1 15b  b  15.4 17 21 Giải: a   2; b          A  a b 16  16 b  16 4 Bài 28 Chứng minh a  b4  a3b  ab3 Giải:  a 2  b2  (12  12 )  a  b2  a  b2 a  b2  2ab a  b2  a  b4  a3b  ab3   Bài 29           Tìm giá trị nhỏ biểu thức sau: ( x  y  1) xy  y  x A  (Với x; y số thực dương) xy  y  x ( x  y  1) Giải: ( x  y  1)  a; a   A  a  Có Đặt xy  y  x a Aa 8a a a 10 10   (  )       A  a 9 a 9 a 3 3 Bài 30 Cho ba số thực a , b, c đôi phân biệt a2 b2 c2 Chứng minh   2 (b  c)2 (c  a)2 (a  b) Giải:  Gia sư Thành Được www.daythem.edu.vn a b b c c a    1 (b  c) (c  a) (c  a) (a  b) (a  b) (b  c)  a b c  VT      0 ( b  c ) ( c  a ) ( a  b )   (Không cần dấu = xảy hoặ cần cho a= 1,b=0 => c=-1 xảy dấu =) Bài 31 Cho số dương a; b; c thoả mãn a + b + c  Chứng ming 2009   670 2 a b c ab  bc  ca Giải: 2009  2 a  b  c ab  bc  ca 1 2007 2007 Bài 32:        670 2 2 a  b  c ab  bc  ca ab  bc  ca ab  bc  ca  a  b  c  a  b  c Cho a, b, c số thực dương thay đổi thỏa mãn: a  b  c  Tìm giá trị nhỏ biểu thức P  a  b2  c  ab  bc  ca a 2b  b c  c a Giải: 3(a2 + b2 + c2) = (a + b + c)(a2 + b2 + c2) = a3 + b3 + c3 + a2b + b2c + c2a + ab2 + bc2 + ca2 Mà a3 + ab2  2a2b ;b3 + bc2  2b2c;c3 + ca2  2c2a Suy 3(a2 + b2 + c2)  3(a2b + b2c + c2a) >  (a  b2  c ) ab  bc  ca 2 Pa b c  Suy P  a  b  c  2(a  b  c ) a  b2  c2 2 t = a2 + b2 + c2, với t  Suy P  t  9t t t      3    P  2t 2t 2 2 a=b=c=1 Bài 33 Ch x,y,z số thực dương thỏa mãn x+y+z = tìm giá trị nhỏ 1   P= 16 x y z Giải:  1 1 1  y x   z x   z y  21 P=     x  y  z          16x y z  16x y z   16 x y   16 x z   y z  16 z y y x z x   có =khi y=2x;   z=2y   z=4x; =>P  49/16 4y z 16 x y 16 x z Min P = 49/16 với x = 1/7; y = 2/7; z = 4/7 Bài 34 Cho hai số thực dương x, y thỏa mãn:   23 x y Gia sư Thành Được www.daythem.edu.vn Tìm giá trị nhỏ biểu thức: B  8x   18y  x y Giải:  2  2 4 5  18y    8x    18y         12  23  43 x y  x  y x y 1 1 1 1 Dấu xảy  x; y    ;  Vậy Min B 43  x; y    ;   3  3 B  8x  Bài 35 Cho x, y z ba số thực thuộc đoạn [1;2] có tổng không vượt Chứng minh x2 + y2 + z2 9 Gải:  x   x   x    (x  1)( x  2)   x  3x  Tương tự y  3y  z  3z  2 2  x + y + z  3( x + y +z) –  – = Bài 36 Cho a,b,c số thuộc  1; 2 thỏa mãn điều kiện a2+b2+c2 = Chứng minh a  b  c  Giải:  a  1 a     a  a   0; b2  b   0; c  c    a  b  c  a  b2  c2   Bài 37 Cho số dương a,b,c thỏa mãn a  b  c  Chứng minh rằng: 1 97 a   b2   c2   b c a Giải:   81      1.a       a    a    a  ; b  16  b  b 4b  97       b2   b  ; c   c   c 4c  a 4a  97  97  Bài 38 cộng vế lại Cho tam giác có ba cạnh a,b,c chu vi 2p Chứng minh p p p   9 p a p b p c Giải: p p p 1 9    hay     p a p b p c p a p b p c p a  p b p c p Bài 39 Cho a,b,c độ dài ba cạnh tam giác có chu vi Chứng minh rằng: 3(a  b2  c )  2abc  52 Giải: Gia sư Thành Được www.daythem.edu.vn abc  ( a  b  c)(a  b  c)(a  b  c )  (6  2a)   2b   2c   abc  24   2abc  48   ab  bc  ac  16  36  (a  b  c )   (a  b  c )  2abc  48 (1)     a  b2  c2  (2) (1)and(2)  dpcm Có chứng minh 3(a  b2  c )  2abc  18 hay không? Bài 40 Cho a, b, c độ dài cạnh tam giác có chu vi Tìm giá trị nhỏ biểu thức 3 P  ( a  bc )1  a b c Giải: 2 2 2  a  ( b  c )  ( a  b  c ) ( a b  c )  b  ( c  a )  ( b  c  a ) ( b c  a ) Có a (1) , b (2) 2 c  ca  (  b )  ( c  a  b ) ( c a  b ) (3) Dấu „=‟ xảy abc Do a,b,c độ dài cạnh tam giác nên vế (1), (2), (3) dương Nhân vế với vế (1), b ca  ( b  c ) ( b c  a ) ( c a  b ) (2), (3) ta có : a (*)  a b c  (  a ) (  b ) (  c )  ( a  b  ca )  ( b  b c  c a )  a b c  a  b  c  Từ nên (*)   a b c  ( a b  b c  c a )   a b c  ( a b  b c  c a )   (*) 3 3  b  c  () a  b  c  () a  b  c ( a b  b c  c a )  a b c   ( a b  b c  c a )  a b c Ta có a 3 ( a  b  c )  a b c  a b c  ( a b  b c  c a )   a b c  ( a b  b c  c a )    Từ (**)  a  2  b  2   c  2 2 0 3 ( a  b  c )  a b c  (  )   Áp dụng (*) vào (**) cho ta Dấu “=” xảy abc Từ giá trị nhỏ P đạt abc Bài 41 Cho a, b, c độ dài cạnh tam giác có chu vi Chứng minh  a3  b3  c3  3abc  Giải: *P  a  b3  c3  3abc Ta có a  b3  c3  3abc  (a  b  c )(a  b  c  ab  bc  ac )  a  b3  c3  3abc  (a  b  c  ab  bc  ac) (1) có abc  (a  b  c)(a  b  c)(a  b  c)  (1  2a)(1  2b)(1  2c)  2   ab  bc  ca  (2) 3 (1)and(2)  a3  b3  c3  3abc  a  b  c    ab  bc  ca  3 1  4(ab  bc  ca )  8abc  6abc  mà ab  bc  ca    a  b2  c2 2 P1 a   b2  c2  1  1  1 1 1  2  a    b    c     a  b  c   P    3  3  3 6  Gia sư Thành Được www.daythem.edu.vn *P  a  b3  c3  3abc abc  (a  b  c)(a  b  c)(a  b  c)  (1  2a)(1  2b)(1  2c)  1  4(ab  bc  ca)  8abc   ab  bc  ca )  2abc  (3) P  a3  b3  c3  3abc  (a  b  c)(a  b  c  ab  bc  ac)  6abc  a  b  c  ab  bc  ac  6abc   a  b  c    ab  bc  ca   6abc 1    ab  bc  ca  2abc     4 Bài 42 Cho ba số dưỡng,y,z thỏa mãn x+y+z =6 Chứng minh rằng: x  y  z  xy  yz  zx  xyz  Giải: Chứng minh xyz    x  y  z  x  y  z  x  y  z   (6  x)(6  y )(6  z )  216  72( x  y  z )  24( xy  yz  zx)  8xyz  xyz  24  ( xy  yz  zx) (1) mà  x  y  z    x  y  z  2xy  yz  2xz   x  y  z  xy  yz  xz  36  3xy  yz  3xz (2) Bài 43 Nên xyz  x  y  z  xy  yz  xz   24  ( xy  yz  zx)+ 36  3xy  yz  3xz  xyz  x  y  z  xy  yz  xz   12  ( xy  yz  zx) mà  x  y  z   3( xy  yz  zx)  x  y  z 36  xyz  x  y  z  xy  yz  xz   12   12  8 3 Cho a  1342; b  1342 Chứng minh a  b2  ab  2013  a  b  Dấu đẳng thức xảy 2 2 nào? Giải: Ta sử dụng ba kết sau:  a  1342    b  1342  2  0;  a  1342  b  1342   0; a  1342  b  1342  Thật vậy: (1)  a  1342    b  1342    a  b  2.1342. a  b   2.13422  (2)  a  1342  b  1342    ab  1342a  1342b  13422   a  b  2.1342  a  b   2.13422  ab  1342a  1342b  13422   a  b  ab  3.1342  a  b   3.13422  2.2013  a  b   3.13422  2013  a  b   2013  a  b   2.2013.1342  2013  a  b   2013  a  b  1342  1342   2013. a  b  2 10 Gia sư Thành Được www.daythem.edu.vn Cách : A   x  1   x  3   x  1  x  3 4 2 2 2 A   x  1   x  3    x  1  x  3   A   2x  8x  10    x  4x  3 A   2( x  2)     ( x  2)  1 2 A  4( x  2)  8( x  2)   4( x  2)  8( x  2)  A  8( x  2)   Bài 45: Cho a,b,c số thực dương thỏa mãn a+b+c=1 Chứng minh rằng: ab bc ca    c 1 a 1 b 1 Giải: Bài 46 Cho x,y,z ba số thực dương thỏa mãn điều kiện xyz=1 Chứng minh rằng: 1 x  y 3  1  1 3  y  z  z  x3 Giải: 11 Gia sư Thành Được www.daythem.edu.vn x  y  2xy   x  y   x  y   2xy  x  y   x  y  xy  x  y    x  y  xy  x  y  z    1 x  y 3  1 x  y 3  xy  x  y  z  z x y ;  ;   dpcm 3 3 x  y  z 1 y  z x  y  z 1 z  x x y z Bài 47 Cho a,b số thực dương Chứng minh :  a  b  ab  2a b  2b a 2  ab 1  1      a  b   a  b     a  b    a     b     ab  a  b   2a b  2b a Bài 2 4     Giải:  a  b 48 Cho ba số thực a,b,c thỏa mãn điều kiện: 1  8a  1   8b3  8c3 1 Giải: 1  8a ;    2a  1  4a  2a  1 1    2 2a   4a  2a  4a  2a  1  8c3 2c  1 1  VT     1 2a  2b  2c  2a   2b   2c  1  8b3 2b  ;  2 Bài 49 a b3 c Với a,b,c ba số thực dương Chứng minh :    a  b  c b c a Giải: Cách 1: 2 a  b2  c  a  b2  c   a b3 c a b c  a  b  c          a  b2  c b c a ab bc ca ab  bc  ca ab  bc  ca Cách 3 a3 b c  ab  2a ;  bc  2b ;  ca  2c  VT   a  b  c   (ab  bc  ca )  a  b  c Bài 50 b c a Cho x,y,z ba số thực dương thỏa mãn xyz = Chứng minh rằng: x2 y2 z2    y 1 z 1 x 1 Giải: x2 y 1 y2 z 1 z2 x 1 3 3   x;   y;   z  VT   x  y  z      y 1 z 1 x 1 4 4 12 [...]...  2 2 Bài 49 a 3 b3 c 3 Với a,b,c là ba số thực dương Chứng minh rằng :    a 2  b 2  c 2 b c a Giải: Cách 1: 2 2 2 a 2  b2  c 2  a 2  b2  c 2   a 3 b3 c 3 a 4 b 4 c 4  a  b  c          a 2  b2  c 2 b c a ab bc ca ab  bc  ca ab  bc  ca 2 Cách 2 3 3 a3 2 b 2 c  ab  2a ;  bc  2b ;  ca  2c 2  VT  2  a 2  b 2  c 2   (ab  bc  ca )  a 2  b 2  c 2 Bài 50 b c...  1 xy  x  y  z  z 1 x 1 y ;  ;   dpcm 3 3 3 3 x  y  z 1 y  z x  y  z 1 z  x x y z Bài 47 Cho a,b là các số thực dương Chứng minh rằng :  a  b 2  ab  2a b  2b a 2 2  ab 1  1  1     a  b   a  b     a  b    a     b     2 ab  a  b   2a b  2b a Bài 2 2 4  4    Giải:  a  b 48 Cho ba số thực a,b,c thỏa mãn điều kiện: 1 1  8a 3  1 1... A   2( x  2) 2  2   4  ( x  2) 2  1 2 2 2 A  4( x  2) 4  8( x  2) 2  4  4( x  2) 4  8( x  2) 2  4 A  8( x  2) 4  8  8 Bài 45: Cho a,b,c là các số thực dương thỏa mãn a+b+c=1 Chứng minh rằng: ab bc ca 1    c 1 a 1 b 1 4 Giải: Bài 46 Cho x,y,z là ba số thực dương thỏa mãn điều kiện xyz=1 Chứng minh rằng: 1 1 x  y 3 3  1 1  1 3 3 1  y  z 1  z 3  x3 Giải: 11 Gia

Ngày đăng: 02/09/2016, 18:58

TỪ KHÓA LIÊN QUAN

w