1. Trang chủ
  2. » Giáo Dục - Đào Tạo

skkn một số kinh nghiệm trong việc nhận dạng bài tập tích phân và hướng giải quyết

19 470 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 519 KB

Nội dung

Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải MỤC LỤC PHẦN I PHẦN MỞ ĐẦU LÝ DO CHỌN ĐỀ TÀI MỤC ĐÍCH NGHIÊN CỨU ĐỐI TƯỢNG, PHẠM VI NGHIÊN CỨU PHƯƠNG PHÁP NGHIÊN CỨU THỜI GIAN NGHIÊN CỨU PHẦN II Chương Chương Chương I II PHẦN III NỘI DUNG ĐỀ TÀI CƠ SỞ LÝ LUẬN, CƠ SỞ THỰC TIỄN CƠ SỞ LÝ LUẬN CƠ SỞ THỰC TIỄN THỰC TRẠNG CỦA ĐỀ TÀI MỘT SỐ GIẢI PHÁP PHƯƠNG PHÁP ĐỔI BIẾN SỐ ĐỔI BIẾN SỐ LOẠI I ĐỔI BIẾN SỐ LOẠI II PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN Trang Trang Trang Trang Trang Trang Trang Trang Trang 11 KẾT LUẬN - KIẾN NGHỊ KẾT LUẬN KIẾN NGHỊ TÀI LIỆU THAM KHẢO Lê Thanh Xuân Trang Trang Trang Trang Trang THPT Nguyễn Trường Tộ Trường Trang 15 Trang 16 Trang 17 Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải PHẦN I: PHẦN MỞ ĐẦU Lý chọn đề tài: Toán học môn khoa học đòi hỏi tư lớn với lập luận chặt chẽ logic Để có kỹ đó, đòi hỏi học sinh cần phải có vốn kiến thức toán học phổ thông Tuy nhiên, thật tế cho thấy đa số học sinh thường hay lúng túng lập luận thiếu chặt chẽ đứng trước toán đó, chí em bị bế tắc không tìm lời giải đối diện với toán Một mặt, em thiếu kỹ phương pháp trình bày Mặt khác, em chưa nắm phương pháp giải, nắm rõ phương pháp chưa phân loại toán để áp dụng phương pháp giải phù hợp Trong chương trình môn Toán Giải tích lớp 12, mảng kiến thức tích phân chiếm vị trí quan trọng, thường đề thi tốt nghiệp, ĐH-CĐ, TCCN Mặc dù, sách giáo khoa giải tích 12(Cơ bản) nêu hai phương pháp giải là: phương pháp đổi biến số phương pháp tính tích phân phần, không nêu rõ bước để thực phương pháp, phân loại dạng toán để áp dụng phương pháp (đặc biệt phương pháp đổi biến số) Do đó, đứng trước toán tích phân học sinh thường hay lúng túng, không phân dạng để áp dụng phương pháp, phân dạng bắt đầu nào, đặc biệt đa số học sinh có học lực trung bình yếu trường THPT Nguyễn Trường Tộ Nhằm nâng cao kỹ nhận dạng, rèn luyện kỹ giải toán tích phân cho học sinh, chọn đề tài: “ MỘT SỐ KINH NGHIỆM TRONG VIỆC NHẬN DẠNG BÀI TẬP TÍCH PHÂN HƯỚNG GIẢI QUYẾT ” nhằm nêu số kỹ nhận dạng tập tích phân hướng giải toán tích phân đó, qua giúp cho học sinh Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải với học lực đa số trung bình yếu trường THPT Nguyễn Trường Tộ có số kỹ tối thiểu để giải toán tích phân đề thi tốt nghiệp THPT nói riêng kỳ thi tuyển sinh nói chung Mục đích đề tài: Mục đích đề tài người viết muốn nêu cách nhìn nhận, số kỹ việc giải toán tích phân, nhằm giúp cho học sinh có kỹ để nhận dạng vận dụng phương pháp giải phù hợp đối diện với toán tích phân Đối tượng phạm vi đề tài: Đối tượng phạm vi nghiên cứu đề tài số dạng tập tích phân sách Giải Tích lớp 12-Cơ số toán tích phân đề kiểm tra học kỳ II Sở Giáo dục Đào tạo , toán tích phân đề thi tốt nghiệp THPT Bộ Giáo dục Đào tạo Phương pháp nghiên cứu: Phương pháp: - Nghiên cứu lý luận chung - Khảo sát điều tra từ thực tế dạy học - Tổng hợp so sánh , đúc rút kinh nghiệm Cách thực hiện: - Trao đổi với đồng nghiệp, tham khảo ý kiến giáo viên môn - Liên hệ thực tế nhà trường, áp dụng đúc rút kinh nghiệm qua trình giảng dạy - Thông qua việc giảng dạy trực tiếp lớp khối 12 năm học Thời gian nghiên cứu: Trong suốt thời gian trực tiếp giảng dạy lớp 12 trường THPT A Lưới từ năm 2007 đến PHẦN II: NỘI DUNG CỦA ĐỀ TÀI Chương I: CƠ SỞ LÝ LUẬN SỞ THỰC TIỄN Cơ sở lý luận: Mỗi người tồn sống hình thành cho kỹ sống riêng Kỹ người sinh có mà hình thành từ môi trường sống, từ kinh nghiệm sống người Để hình thành kỹ đơn giản mà phải trải qua trình dài sở đúc rút kinh nghiệm vốn có, sở phân tích, tổng hợp khái quát hoá Kỹ giải toán hiểu kỹ xảo, thủ thuật trình giải toán Đối với dạng toán mang cách giải với thủ thuật riêng mà việc hình thành cho học sinh thủ thuật điều thật cần thiết cho người học toán Việc hình thành cho học sinh kỹ giải toán không mang lại cho học sinh có cách nhìn tổng quát mặt phương pháp dạng toán mà giáo dục cho học sinh biết phân tích, xem xét để tình cụ thể, công việc cụ thể vận dụng khả hợp lý Đồng thời góp phần bồi dưỡng cho ngưòi học Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải đức tính cần thiết người lao động sáng tạo tính chủ động, tính kiên trì vượt khó, tính kế hoạch, kỹ phân tích, tổng hợp vật, tượng Cơ sở thực tiễn: Nhiệm vụ trọng tâm năm học trường THPT Nguyễn Trường Tộ nhằm nâng cao tỷ lệ thi đỗ tốt nghiệp trung học phổ thông, mà môn Toán môn thi bắt buộc sáu môn thi Bộ Giáo dục Đào tạo quy định hàng năm, tích phân mảng kiến thức phải có đề thi Tốt nghiệp THPT Bộ GD-ĐT Do đó, việc hình thành cho học sinh kỹ nhận dạng, chọn cách giải phù hợp đứng trước toán tích phân thực điều cần thiết thiết thực cho học sinh mà đặc biệt học sinh dân tộc tiểu số với học lực đa số trung bình yếu trường THPT Nguyễn Trường Tộ Chương II: THỰC TRẠNG CỦA ĐỀ TÀI Học sinh trường THPT Nguyễn Trường Tộ đa số người dân tộc thiểu số nên nhận thức chậm, chưa hệ thống kiến thức Khi gặp toán tích phân đa số học sinh chưa phân loại định hình cách giải, hướng giải Bên cạnh đó, sách giáo khoa Giải tích 12-Cơ bản- Trang 108 phần “ PHƯƠNG PHÁP TÍNH TÍCH PHÂN ”, phần “ phương pháp đổi biến số ” sau đưa định lý: Cho hàm số f (x) liên tục đoạn [ a; b] Giả sử hàm số x = µ (x) có đạo hàm liên tục đoạn [α ; β ] cho µ (α ) = a, µ ( β ) = b a ≤ µ (t ) ≤ b với t ∈ [α ; β ] Khi đó: b ∫ a β f ( x)dx = ∫ f ( µ (t )) µ ' (t ) dt α sách giáo khoa đưa ví dụ áp dụng là: “ Ví dụ 5: Tính ∫1+ x dx , giải π π < t < ” 2 Sau định lý ví dụ sách giáo khoa lại đưa ý: cách đặt x = tan t , − Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải “ Cho hàm số f (x) liên tục đoạn [ a; b] Để tính b ∫ f ( x)dx , ta chọn hàm số a u = u (x) làm biến số mới, đoạn [ a; b] , u (x) có đạo hàm liên tục u ( x) ∈ [α ; β ] Giả sử viết: f ( x ) = g (u ( x))u ' ( x) , x ∈ [ a; b ] , với g(u) liên tục đoạn [α ; β ] Khi đó, ta có: b u (b ) a u(a) ∫ f ( x)dx = ∫ g (u)du ” Sau phần ý trên, sách giáo khoa lại đưa hai ví dụ áp dụng, là: “ Ví dụ 6: Tính π ∫ sin x cos xdx , giải cách đặt u = sin x ; Ví dụ 7: Tính ∫ 0 x (1 + x ) dx , giải cách đặt u = + x ” Rõ ràng sách giáo khoa nêu hai phương pháp đổi biến số tính tích phân đổi biến số cách đặt x = µ (t ) đổi biến số cách đặt u = µ (x) Tuy nhiên, qua thực tế nhiều năm giảng dạy lớp 12 trường THPT Nguyễn Trường Tộ, với học lực học sinh chủ yếu trung bình yếu riêng việc tiếp thu, hiểu định lý ý khó chưa nói đến việc áp dụng chúng để giải toán Hơn nữa, sách giáo khoa không nêu bước để thực phương pháp đổi biến số cách rõ ràng để học sinh vận dụng, phân loại dạng toán để áp dụng phương pháp đổi biến số đổi sang biến đặt Bởi vậy, dù học sinh có nắm rõ bước để thực phương pháp đổi biến số, nhìn toán tích phân cho sử dụng phương pháp đổi biến số, đổi biến cách đặt nào, thấy học sinh lúng túng thiếu tự tin Đối với “ phương pháp tính tích phân phần ”, sách giáo khoa đưa định lý để làm sở cho việc xây dựng công thức Tuy nhiên phân loại dạng toán để sử dụng phương pháp tính tích phân phần phải sử dụng bảng tổng hợp dạng toán tính nguyên hàm phần Hoạt động – Sách giao khoa - Cơ - Trang 100, bảng tổng hợp phần chưa đầy đủ phương pháp dạng toán Bởi cần phải bổ sung để học sinh có cách nhìn tổng quát, đầy đủ phương pháp dạng toán, từ học sinh có cách nhìn tổng thể nhằm giúp cho học sinh sử dụng phương pháp tích phân phần cách xác hiệu CHƯƠNG III: MỘT SỐ GIẢI PHÁP Qua nghiên cứu trao đổi đúc rút kinh nghiệm từ thực tế mạnh dạn xây dựng phương pháp, đưa số kinh nghiệm việc nhận dạng tập tích phân hướng giải tập đó, qua giúp cho học sinh hình thành kỹ năng, cách nhìn nhận để từ có hướng giải đứng trước toán tích phân mảng kiến thức quan trọng thường kỳ thi tốt nghiệp THPT, kỳ thi tuyển sinh ĐH-CĐ TCCN Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải I Phương pháp đổi biến số: 1) Đổi biến số loại I ( đặt u = µ (x) ): a) Phương pháp: b ∫ f ( x)dx Giả sử cần tính: a Bước 1: Đặt u = µ ( x) ⇒ du = µ ' ( x)dx  x = a ⇒ u = µ (a) Bước 2: Đổi cận :   x = b ⇒ u = µ (b) Bước 3: Biểu thị : f ( x)dx = g (u )du b µ (b ) µ (b ) a (a) µ (a) ∫ f ( x)dx = µ ∫ g (u)du = G(u ) Lúc đó: = G ( µ (b)) − G ( µ (a )) b) Cách nhận dạng toán tích phân sử dụng phương pháp đổi biến số loại I: * Dạng 1: Hàm số dấu tích phân hàm có dạng Cách giải: Thông thường ta đặt u = Q(x) Ví dụ 1: Tính P( x) (Q( x ))α ∫ x2 (1 + x ) dx ( Bài tập 3a – Giải Tích 12 – Cơ – Trang 113) Bài giải: Đặt u = + x ⇒ du = dx x = ⇒ u = x = ⇒ u = Đổi cận:  Biểu thị: x2 (1 + x ) Do đó: ∫ x2 (1 − u ) du dx = u dx = ∫ (1 + x ) (1 − u ) du =  u ∫  1 u −2 u u +  u2  du   u2  1 1 − −  −3    = ∫  u − 2u + u du =  − 2u − 4u + u  =  1   ∫ Vậy x2 (1 + x ) dx = * Dạng 2: Hàm số dấu tích phân hàm có dạng P( x).( Q( x) ) α Cách giải: Thông thường ta đặt u = Q(x) Ví dụ 2: Tính ∫x (1 − x ) dx ( Đề thi TN THPT – Năm 2008) Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải Bài giải: 3 2 Đặt u = − x ⇒ du = −3x dx ⇒ x dx = − du x = ⇒ u = x = ⇒ u = Đổi cận:  3 4 Biểu thị: x (1 − x ) dx = − u du 1 1 Do đó: ∫ x (1 − x ) dx = − ∫ u du = ∫ u du = u 31 30 15 ∫x Vậy = (1 − x ) dx = 0 15 15 * Dạng 3: Hàm số dấu tích phân hàm lượng giác b ∫ f (sin x) cos x.dx → đặt u = sin x Cách giải: Nếu gặp : a b ∫ f (cos x).sin x.dx → đặt u = cos x a b ∫ f (tan x) cos a b x ∫ f (cot x) sin a x dx → đặt u = tan x dx → đặt u = cot x ( f (u ) : biểu thức biểu diễn theo u ) π Ví dụ 3: Tính I = cos x dx ∫ + sin x ( Đề kiểm tra HKII – Năm học:2008-2009 – Sở GD-ĐT T.T.Huế ) Bài giải: π π b Phân tích: I = cos x dx = ∫0 + sin x ∫0 + sin x cos xdx ( Dạng: ∫a f (sin x) cos x.dx ) Đặt u = + sin x ⇒ du = cos xdx ( Lẽ đặt u = sin x ta đặt u = + sin x để mẫu số theo biến u gọn hơn) x = ⇒ u =  Đổi cận:  π  x = ⇒ u = cos x dx = du Biểu thị: + sin x u π Do đó: I = cos x dx = du = ln u ∫ ∫ Lê Thanh Xuân + sin x u = ln THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải π Vậy I = cos x dx = ln ∫ π Ví dụ 4: Tính ∫ π cos + sin x dx x tan x ( Đề kiểm tra HKII – Năm học:2005-2006 – Sở GD-ĐT T.T.Huế ) Bài giải: π ∫ cos Phân tích: π π dx x tan x 1 dx (Dạng: ∫ f (tan x) .dx ) cos x tan x cos x a =∫ π Đặt u = tan x ⇒ du = b 1 dx cos x π   x = ⇒ u = Đổi cận:  x = π ⇒ u =  Biểu thị: dx cos x, tan x π Do đó: ∫ π cos = x tan x − u dx − du = u du = ∫ u du = 2u π ∫ π cos Vậy dx x tan x ( ( ) = −1 ) = −1 * Dạng : Hàm số dấu tích phân chứa ln x b Cách giải: Nếu gặp: ∫ f (ln x) x dx → đặt u = ln x a ( f (ln x) : biểu thức chứa ln x ) π Ví dụ 5: Tính e3 cos(ln x) dx x ∫ ( Đề kiểm tra HKII – Năm học:2006-2007 – Sở GD-ĐT T.T.Huế ) Bài giải: π π e3 e3 Phân tích: cos(ln x) dx = cos(ln x) dx ∫1 x ∫1 x b ( Dạng a x Đặt u = ln x ⇒ du = dx Lê Thanh Xuân ∫ f (ln x) x dx ) THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải x = ⇒ u =  π Đổi cận:  π x = e ⇒ u =  cos(ln x) dx = cos udu Biểu thị: x π π π e3 cos(ln x) dx = ∫ cos udu = sin u = x 0 Do đó: ∫ π Vậy e3 cos(ln x) dx = x ∫ * Dạng 5: Hàm số dấu tích phân chứa n f ( x) Cách giải: Chúng ta đặt u = n f ( x) ( Để đơn giản, sau đặt u = n f ( x) ta nên nâng lũy thừa bậc n hai vế trước lấy vi phân ) Ví dụ 6: Tính J = ∫ xdx x2 +1 ( Đề thi TN THPT – Năm 2007) Bài giải: Đặt u = x + ⇒ u = x + ⇒ 2udu = xdx ⇒ xdx = udu  x = ⇒ u =  x = ⇒ u = xdx 2udu = = 2du Biểu thị: u x +1 Đổi cận:  Do đó: ∫ x2 +1 Vậy ∫ xdx x2 +1 ln Ví dụ 7: Tính I = ∫ ln (e x ) e −1 ∫ 2du = 2u = ( =2 5− +1 ex x 5 xdx ( =2 5− ) ) dx ( Đề thi TN THPT – Năm 2006) Bài giải: Đặt u = e x − ⇒ u = e x − ⇒ 2udu = e x dx ⇒ e x dx = 2udu  x = ln ⇒ u =  x = ln ⇒ u = Đổi cận:  Lê Thanh Xuân THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải (e Biểu thị: ln ∫ Do đó: ex −1 (e x ∫ Vậy (e x ) (u +1 ex ) +1 ex e +1 x ln dx = ( ) +1+1 2udu = u + du u ( ) ) 1  dx = ∫ u + du = 2 u + 2u  = 50 3 2 ex +1 ln ln ) +1 ex x dx = 50 2) Đổi biến số loại II ( đặt x = µ (t ) ) a) Phương pháp: b Giả sử cần tính: ∫ f ( x)dx a Bước 1: Đặt x = µ (t ) ⇒ dx = µ ' (t )dt  x = a ⇒ µ (t ) = a ⇒ t = α Bước 2: Đổi cận :   x = b ⇒ µ (t ) = b ⇒ t = β Bước 3: Biểu thị : f ( x) dx = g (t )dt b Lúc đó: β ∫ f ( x)dx = α∫ g (t )dt = G(t ) a β = G ( β ) − G (α ) α b) Cách nhận dạng toán tích phân sử dụng phương pháp đổi biến số loại II: * Dạng 1: Hàm số dấu tích phân có chứa a − x (a > 0) Cách giải: Ta đặt x = a sin t ( x = a cos t ) ( Vì hàm số y = sin t có hàm số ngược đoạn [ − π / 2; π / 2] nên ta xét biến số t đoạn [ − π / 2; π / 2] , hàm số y = cos t ta xét t ∈ [ 0; π ] ) Ví dụ 8: Tính ∫ − x dx ( Bài tập 3b/ – Sách giáo khoa – Trang 113) π π Bài giải: Đặt x = sin t ( với − ≤ t ≤ ) ⇒ dx = cos tdt 2  x = ⇒ sin t = ⇒ t =  Đổi cận:  π  x = ⇒ sin t = ⇒ t = Biểu thị: − x dx = − sin t cos tdt = cos t cos tdt = cos t cos tdt Do đó: ∫ π π 0 π − x dx = ∫ cos t cos tdt = ∫ cos tdt ( Vì ≤ t ≤ ⇒ cos t ≥ ) π π + cos 2t 1 π =∫ dt = (t + sin 2t ) = 2 0 Lê Thanh Xuân 10 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải Vậy ∫ − x dx = π * Dạng 1: Hàm số dấu tích phân có chứa a + x (a > 0) Cách giải: Ta đặt x = a tan t ( x = a cot t )  π π ( Vì hàm số y = tan t y = cot t có hàm ngược khoảng  − ;  nên ta   π π ; )  2 2 xét biến số t khoảng  − Ví dụ 9: Tính dx ∫4+ x Bài giải: π  π dt  − < t <  ⇒ dx = 2 cos t   x = ⇒ tan t = ⇒ t =  Đổi cận:  π  x = ⇒ tan t = ⇒ t = dx 2 = dt = cos t dt = dt Biểu thị: 2 2 4+ x + tan t cos t cos t Đặt x = tan t π π dx 1 π Do đó: = dt = ∫0 + x ∫0 2 t = 2 Vậy dx ∫4+ x = π 3) Một số lưu ý phương pháp đổi biến số: Các toán tích phân đề thi tốt nghiệp THPT, đề thi tuyển sinh ĐH – CĐ, TCCN thường giải phương pháp đổi biến số loại I nhiều phương pháp đổi biến số loại II Tuy nhiên, đứng trước toán tích phân nhiều khó phân biệt phải sử dụng phương pháp đổi biến số loại Vì vậy, đối diện với toán tích phân mà xác định toán thuộc dạng phải sử dụng phương pháp đổi biến số, trước tiên nên phương pháp đổi biến số loại I, với phương pháp gặp khó khăn bước 3, nghĩa việc biểu thị biểu thức dấu tích phân f ( x) dx theo g (u )du không thuận lợi nghĩ đến phương pháp đổi biến số loại II Chẳng hạn, Ví dụ 8: Tính ∫ − x dx , nhận định hàm số dấu tích phân có chứa n f ( x) − x , nên sử dụng phương pháp đổi biến số loại I cách đặt u = − x , từ ta có: u = − x ⇒ u = − x ⇒ 2udu = −2 xdx ⇒ xdx = −udu Lê Thanh Xuân 11 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải Nhưng, thấy hàm số dấu tích phân có dx , thêm xdx vào biểu thức dấu tích phân phải có phép chia cho x , nghĩa biểu thức dấu tích phân trở 1− x2 xdx , gặp khó khăn hai nhẽ: x i) Vì tích phân lấy từ đến nên có chứa x = , phép chia không hợp lệ ii) Theo cách đặt biểu thị x = − u , biểu thị x theo u lại xuất dấu thành: Vì vậy, toán không phù hợp với phương pháp đổi biến số loại I nên phải sử dụng phương pháp đổi biến số loại II II Phương pháp tính tích phân phần: 1) Công thức: Nếu u = u (x ) v = v(x) hai hàm số có đạo hàm liên tục đoạn [ a; b] thì: b b b ∫ u( x)v' ( x)dx = (u ( x)v( x)) − ∫ u' ( x)v( x)dx a a ( hay b b a a ∫ udv = uv a b − ∫ vdu ) a 2) Cách nhận dạng toán tích phân sử dụng phương pháp tích phân phần: b * Dạng 1: Nếu tích phân cần tính có dạng ∫ P( x) cos xdx a ( P(x) đa thức x ) u = P ( x) du = P ' ( x) dx ⇒ dv = cos xdx v = sin x Cách giải: Đặt  π Ví dụ 10: Tính ∫ x(1 + cos x)dx ( Đề thi TN THPT – Năm 2009) Bài giải: π π 0 π π 0 + ∫ x cos xdx = π2 +I Ta có: ∫ x(1 + cos x)dx = ∫ ( x + x cos x)dx = ∫ xdx + ∫ x cos xdx = π x π π Ta tính I = ∫ x cos xdx u = x du = dx ⇒ Đặt:  dv = cos xdx v = sin x π π π π Khi đó: I = x sin x − ∫ sin xdx = x sin x + cos x = −2 Lê Thanh Xuân 12 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải π Vậy ∫ x(1 + cos x)dx = π2 −2 b * Dạng 2: Nếu tích phân cần tính có dạng ∫ P( x) sin xdx a ( P(x) đa thức x ) u = P ( x) du = P ' ( x )dx ⇒ Cách giải: Đặt  dv = sin xdx v = − cos x π Ví dụ 11: Tính I = (1 + x) sin xdx ∫ ( Bài tập 4a/ – Sách giáo khoa – Trang 113) Bài giải: u = + x du = dx ⇒ dv = sin xdx v = − cos x Đặt:  Khiđó: I = − (1 + x) cos x π π π π + ∫ cos xdx = − (1 + x) cos x 02 + sin x 02 = π Vậy (1 + x) sin xdx = ∫ b x * Dạng 3: Nếu tích phân cần tính có dạng ∫ P( x)e dx a ( P(x) đa thức x ) u = P ( x) du = P' ( x)dx ⇒ Cách giải: Đặt   x x dv = e dx v = e x Ví dụ 12: Tính I = ∫ (4 x + 1)e dx ( Đề thi TN THPT – Năm 2008 – Lần 2) Bài giải: u = x + du = 4dx ⇒  x x dv = e dx v = e Đặt:  Khi đó: I = (4 x + 1)e x 1 1 0 + ∫ 4e x dx = (4 x + 1)e x + 4e x x Vậy I = ∫ (4 x + 1)e dx = 9e − Lê Thanh Xuân 13 THPT Nguyễn Trường Tộ Trường = 9e − Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải b * Dạng 4: Nếu tích phân cần tính có dạng ∫ P( x) ln xdx a ( P(x) đa thức x , P(x) )  u = ln x du = dx ⇒ x Cách giải: Đặt  dv = P( x) dx v nguyên hàm P(x)  Ví dụ 13: Tính K = ∫ x ln xdx ( Đề thi TN THPT – Năm 2007 ) Bài giải:  u = ln x du = dx ⇒ x Đặt:  dv = xdx v = x  3 3 x2 Khi đó: K = x ln x − ∫ x dx = x ln x − ∫ xdx = x ln x − x 1 = ln − 3 1 Vậy K = ∫ x ln xdx = ln − 3) Một số lưu ý phương pháp tính tích phân phần: b Ngoài toán tích phân có dạng: b b ∫ P( x) cos xdx , ∫ P( x) sin xdx , ∫ P( x)e a a x dx , a b ∫ P( x) ln xdx phải sử dụng phương pháp tính tích phân phần nêu a trên, toán tích phândạng sau: b ∫ P ( x )e a ax + b b b a a ∫ P( x) cos(ax + b).dx , ∫ P( x) sin(ax + b).dx , b dx , ∫ P( x) ln(ax + b).dx giải phương pháp tích phân phần với a cách đặt u dv hoàn toàn tương tự Lê Thanh Xuân 14 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải PHẦN III: KẾT LUẬN KIẾN NGHỊ 1) Kết luận: Mỗi dạng toán liên hệ mật thiết với kỹ định Đó kỹ tiến hành trình hình thành dạng toán Phát kỹ tiềm tàng dạng toán vạch đường để người học chiếm lĩnh dạng toán đạt mục đích học tập khác, đồng thời cụ thể hoá mục đích dạy học dạng toán cách kiểm tra xem mục đích dạy học có đạt kết hay không đạt đến mức độ Không có kỹ tối ưu cho dạng toán mà ta cần truyền đạt trình dạy học Cùng dạng toán đó, có lại phù hợp với kỹ toán khác lại phù hợp với kỹ khác hiển nhiên áp dụng cứng nhắc dạng toán với kỹ định mà phụ thuộc nhiều vào toán cụ thể, phụ thuộc vào nhận thức, tiếp thu đối tượng học sinh Tích phân nội dung quan trọng chương trình môn toán lớp 12 nói riêng bậc THPT nói chung Nhưng học sinh lại mảng kiến thức tương đối khó, phần nhiều thầy cô giáo quan tâm Đề tài dừng lại mức độ áp dụng cho học sinh có học lực đa số trung bình yếu trường THPT Nguyễn Trường Tộ Vì vậy, việc phân loại dạng toán hai phương pháp phương pháp đổi biến số phương pháp tích phân phần chưa tổng quát đầy đủ Tuy nhiên, nhận thấy với mức độ nhận thức yếu học sinh trường THPT Nguyễn Trường Tộ kỹ nhận dạng vừa sức học sinh mang lại cho học sinh thủ thuật tương đối đầy đủ để Lê Thanh Xuân 15 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải giải toán tích phân kỳ thi mà tầm quan trọng dừng lại mức độ đánh giá kỹ vận dụng kiến thức với mức độ kỳ thi tốt nghiệp THPT Đề tài kiểm nghiệm năm học mà giảng dạy lớp 12, học sinh đồng tình đạt kết đáng khích lệ nâng cao khả giải toán tích phân cho học sinh Ngoài ra, em hứng thú học tập lớp có hướng dẫn kỹ em học sinh với mức học trung bình có kỹ giải tập tốt Cụ thể lớp khối 12 sau áp dụng sáng kiến vào giảng dạy số học sinh hiểu có kỹ giải dạng toán nêu sáng kiến kinh nghiệm , kết qua kiểm tra thử sau : Năm học Lớp Tổng số 2009-2010 2010-2011 2011-2012 12a1 12a1 12a3 38 38 39 Điểm trở lên Số Tỷ lệ lượng 15 39% 17 45% 18% Điểm từ đến Điểm Số Số Tỷ lệ Tỷ lệ lượng lượng 19 50% 11% 14 37% 18% 22 56% 10 26% ( Ở lớp 12a1 lớp chọn trường THPT Nguyễn Trường Tộ, lớp 12a3 lớp có học lực đa số trung bình – yếu nên với kết thực nghiệm lớp 12a3 nói sáng kiến kinh nghiệm mang lại kết đáng khích lệ ) Như nhận thấy kỹ mang lại hiệu tương đối Theo dạy phần phương pháp tính tích giáo viên cần rõ các bước phương pháp cách nhận dạng phương pháp để học sinh tiếp thu tốt Mặc dù cố gắng tìm tòi, nghiên cứu song chắn có nhiều thiếu sót hạn chế Tôi mong nhận quan tâm đóng góp ý kiến tất đồng chí, đồng nghiệp để đề tài sáng kiến kinh nghiệm hoàn thiện 2) Một số kiến nghị: * Đối với tổ Toán - Tin trường THPT Nguyễn Trường Tộ: - Cần phát động, động viên thành viên tổ tăng cường nghiên cứu khoa học, sáng tạo đồ dùng dạy học, nghiên cứu ứng dụng phần mêm dạy học để kích thích say mê học tập học sinh môn toán nói riêng mà môn học khác nói chung - Cần có buổi để thảo luận chuyên đề, kinh nghiệm công tác giảng dạy * Đối với trường THPT Nguyễn Trường Tộ: - Đề nghị cấp lãnh đạo tạo điều kiện giúp đỡ học sinh giáo viên có nhiều tài liệu sách tham khảo hay để nghiên cứu học tập nâng cao kiến thức chuyên môn nghiệp vụ - Nhà trường cần tổ chức bổi trao đổi phương pháp giảng dạy Có tủ sách lưu lại tài liệu chuyên đề bồi dưỡng ôn tập giáo viên hàng năm để làm cở sở nghiên cứu phát triển chuyên đề -Hết -Lê Thanh Xuân 16 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải TÀI LIỆU THAM KHẢO Sách giáo khoa Giải tích 12 – Cơ Bản - NXB Giáo Dục - 2008 Sách giáo viên Giải tích 12-Cơ Bản - NXB Giáo Dục - 2008 Các phương pháp tìm nguyên hàm, tích phân số phức – Phan Huy Khải – NXB Giáo Dục – Năm 2009 Một số đề thi tốt nghiệp THPT Bộ GD – ĐT Lê Thanh Xuân 17 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải Ý KIẾN CỦA TỔ TOÁN-TIN * Ưu điểm: * Khuyết điểm: Đức Cơ , ngày tháng năm 2011 Tổ trưởng tổ toán – tin - CN ( Ký, ghi rõ họ tên) Ý KIẾN CỦA HỘI ĐỒNG DUYỆT SÁNG KIẾN KINH NGHIỆM TRƯỜNG THPT NGUYỄN TRƯỜNG TỘ * Nhận xét SKKN: Lê Thanh Xuân 18 THPT Nguyễn Trường Tộ Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải * Kính đề nghị hội đồng duyệt SKKN Sở Giáo dục Đào tạo Gia Lai xem xét công nhận Đức Cơ, ngày tháng năm 2011 Chủ tịch hội đồng duyệt sáng kiến kinh nghiệm Trường THPT Nguyễn Trường Tộ ( Ký, ghi rõ họ tên) Lê Thanh Xuân 19 THPT Nguyễn Trường Tộ Trường ... kỹ nhận dạng, rèn luyện kỹ giải toán tích phân cho học sinh, chọn đề tài: “ MỘT SỐ KINH NGHIỆM TRONG VIỆC NHẬN DẠNG BÀI TẬP TÍCH PHÂN VÀ HƯỚNG GIẢI QUYẾT ” nhằm nêu số kỹ nhận dạng tập tích phân. .. Trường Một số kinh nghiệm việc nhận dạng tập tích phân hướng giải Nhưng, thấy hàm số dấu tích phân có dx , thêm xdx vào biểu thức dấu tích phân phải có phép chia cho x , nghĩa biểu thức dấu tích phân. .. hiệu CHƯƠNG III: MỘT SỐ GIẢI PHÁP Qua nghiên cứu trao đổi đúc rút kinh nghiệm từ thực tế mạnh dạn xây dựng phương pháp, đưa số kinh nghiệm việc nhận dạng tập tích phân hướng giải tập đó, qua giúp

Ngày đăng: 05/05/2017, 17:13

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w