1. Trang chủ
  2. » Mẫu Slide

Bài giảng bài cực trị hàm số giải tích 125

11 191 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 606,5 KB

Nội dung

I Mục tiêu: Về kiến thức:Biết khái niệm cực đại, cực tiểu; biết phân biệt khấi niệm lớn nhất, nhỏ Biết điều kiện đủ để hàm số có cực trị Về kĩ năng: Sử dụng thành thạo điều kiện đủ để tìm cực trị hàm số Về tư thái độ: + Hiểu mối quan hệ tồn cực trị dấu đạo hàm + Cẩn thận, xác; Tích cực hoạt động; rèn luyện tư trực quan, tương tự Hoạt động 1: Khái niệm cực trị Định nghĩa: Giả sử hàm số f xác định tập hợp D x0 ∈ D a) x0 điểm cực đại hàm số f tồn khoảng (a;b) chứa x0 cho (a;b) ⊂ D f(x) < f(x0) với x ∈ (a;b) \{x0} • Ta nói hàm số đạt cực đại x0 • f(x0) gọi giá trị cực đại hàm số ,ta viết yCĐ fCĐ Định nghĩa: Giả sử hàm số f xác định tập hợp D x0 ∈ D b) x0 điểm cực tiểu hàm số f tồn khoảng (a;b) chứa x0 cho (a;b) ⊂ D f(x) > f(x0) với x ∈ (a;b) \{x0} • Ta nói hàm số đạt cực tiểu x0 • f(x0) gọi giá trị cực tiểu hàm số ,ta viết yCT fCT Hàm số đạt cực đại cực tiểu xo, ta gọi hàm số đạt cực trị xo f(xo) gọi giá trị cực trị hàm số 2 Điều kiện cần để có cực trị: Định lý 1: Nếu f có đạo hàm xo đạt cực trị xo f’(xo) =0 x x0-h x0 x0+h f’(x) f(x) + fCD 3)Điều kiện đủ để hàm số đạt cực trị: Định lý 2: (điều kiện đủ 1) Giả sử hàm số f liên tục khoảng (a; b) chứa điểm x0 có đạo hàm khoảng (a; x0) ( x0;b) Khi đó: a) Nếu f’(x) >0; ∀x∈(a; x0) f’(x)

Ngày đăng: 29/11/2016, 22:18

TỪ KHÓA LIÊN QUAN

w