Giáo án môn Toán - Hình học Ngày Tiết 63 - §3 - Hình cầu - Diện tích mặt cầu thể tích hình cầu A Mục tiêu: - Học sinh nhớ nắm khái niện hình cầu, tâm , bán kính, đường kính, đường tròn mặt cầu - Vận dụng thành thạo công thức tính diện tích mặt cầu công thức tính thể tích hình cầu - Thấy ứng dụng công thức đời sống thực tế - Phát triển khả tư học sinh - Giáo dục tính cẩn thận, xác, chuẩn bị chu đáo B Chuẩn bị: Thầy: Thước kẻ, mô hình hình cầu ; compa Trò: Thước kẻ, bóng, compa Phương pháp: vấn đáp, luyện giải C Các hoạt động dạy học: 1.Tổ chức: 2.Kiểm tra: Lồng Bài mới: Hình cầu: Khi quay nửa hình tròn tâm O bán kính R quanh trục AB cố định ta hình cầu Gọi O tâm R bán kính hình cầu Cắt hình cầu mặt phẳng:u cắt mặt cầu mp ⇒ mặt cắt hình tròn học sinh trả lời ?1 Hình Hình trụ Hình cầu Mặt cắt GV yêu cầu học sinh trả lời ?1 HCN không không cách điền vào bảng Hình tròn bán kính Có Có R Hình tròn bán kính không Có nhỏ R * Kết luận: - Khi cắt hình cầu bán kính R mặt phẳng ta hình tròn - Khi cắt mặt cầu bán kính R mặt phẳng ta đường tròn - Đường tròn có bán kính R mặt phẳng qua tâm ( gọi đường tròn lớn) - Đường tròn có bán kính bé R mp không qua tâm * Ví dụ : Trái đất xem hình Giáo án môn Toán - Hình học cầu, xích đạo đường tròn lớn Diện tích mặt cầu: S = π R2 hay S = π d2 R: bán kính d: đường kính mặt cầu * Ví dụ: Gọi d2 đường kính mặt cầu thứ hai Ta có: π d22 = = 34,39⇒ d2 = 5,86 cm Đã học lớp * Ví dụ: Diện tích mặt cầu là: 36 cm2 Tính đường kính mặt cầu thứ hai có diện tích gấp lần diện tích mặt cầu Tóm tắt: S1 = 36 cm2 S2 = S1 d2 = ? Củng cố: Bài 31 SGK: Tính diện tích Bán kính 0,3 mm 6,21 dm 0,283 m 100km hình cầu Diện tích 1,1304 484,4 dm2 1,01 m2 125600 mặt cầu mm km2 S = π R2 Học sinh phân biệt diện tích mặt cầu diện tích hình cầu HDVN: Học công thức ; Đọc 6hm 50dam 452,16 hm2 31400 dam2