T TON - TIN CNG ễN TP HC Kè I MễN TON 10 PHN I: TP HP MNH Bi Lit kờ cỏc phn t ca cỏc hp sau: 1) A n N n 3) 2) B n N* n C n N n 3n 4) D x N x 3x x 2x 5) E n N n N n l bi s ca v nh hn 13 6) F g 7) G n N 9) M n N n l c ca 12 n n l SC ca v 12 }8)h Kư nN T ý L 10 n chn v nh T hn P H T phn t ca cỏc hp sau: Bi Lit kờ cỏc t iệ K n nguyờn t v nh hn 15 } 1) A 3k k Z, k 2) B x Z x 3) C x Z x 4) D x x 2k vi k Z v x 13 5) G x Z x 3x x 3x 6) k H k Z vi k k Bi Lit kờ cỏc phn t ca cỏc hp sau: 1) A x R x 2) B x R x 3) C x R x 4) D x R x 5) E x R x 6) F x R 2x 7) F x R x x 8) Gt x R x 2x 3x Bi g iệ K n 1) 2,3, c, d Tỡm tt c cỏc ca hp sau: h 2) Tỡm tt c cỏc 3) Cho hp T ý ca tpLC x N x T P H v B 1;2 A 1;2;3;4;5 T cú phn t Tỡm tt c cỏc hp X tha iu kin: B X A Bi Tỡm A B; A C; A \ B; B \ A 1) A l hp cỏc s t nhiờn l khụng ln hn 10; B x Z* x 2) A 8;15, B 10;2011 3) 4) A ;4, B 1; 5) A x R x 5; B x R x A 2;, B 1;3 T TON - TIN PHN 2: HM S Dng 1: Tỡm xỏc nh ca hm s - X ột t ớnh chn l ca hm s Bi 1: Tỡm xỏc nh ca cỏc hm s sau : b) a) g t iệ K c) n h P H T ý L T T Bi 2: Tỡm xỏc nh ca hm s: a )y = d) y = x+ x2 - x - 3x b) y = 5x x2 - x - + x- 2x + x + 3x - c) y = x3 + x x+2 e) y = 2x + + - 3x Bi Xột tớnh chn l ca hm s: 1) y 4x 3x 4) y 7) y 2x 3x 2x x 2x x x 2) y x 3x 3) y x4 x 5) x 2x y x x3 x 6) y 8) y 9) y 2x 2x t x iệ g x2 x2 x 5x 5x x2 K n 10) y 2x 2x 4x h ý P H T T L T Dng 2: Vit phng trỡnh ng thng v xột s bin thiờn v th hm s Bi : Vit phng trỡnh ng thng cỏc trng hp sau: a) ng thng (D) qua im A(-21;3) v B(3; 5) b) ng thng (d) qua A(-1;4) v song song song vi ng thng (d) : y = 2x +3 c) ng thng (d) qua B(2;-4) v vuụng gúc vi ng thng (D) : x - 3y -1 = d) ng thng (d) qua giao im ca ng thng (D1): y = 2x - v (D2): y = - x - v cú h s gúc bng Bi2: Lp bng bin thiờn v v th cỏc hm s sau: a/ y = - x2 + 2x 2 c/ y = x2 + b/ y = (1 - x ) d/ y = 2x2 + T TON - TIN e/ y = x(1 x) + 2x g/ y = x2 2x + f/ y = x2 + 2x h/ y = x2 Dng 3: Xột s tng giao ca cỏc th hm s Tỡm ta giao im ca th (P) cỏc hm s v ng thng () v v t trờn cựng h trc a/ y = x2 + 6x + (P) v () y = b/ y = x2 + 3x + (P) c/ y = x2 - 4x +4 (P) v () x = d/ g t ệ2 i yK= x -3x (P) v () : y = x +3 n Dng 4: Tỡm GTLN GTNN ca hm s h T Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm sụ: ý a) y x2 x trờn on 1;5 ; T L b) y x2 x trờn na khong 2;6 P 3;6 ; c) y x x trờn onTH d) y x2 x trờn on 3; v () : y = 3x - ; PHN 3: PHNG TRèNH V H PHNG TRèNH 1) Phng trỡnh cha n du giỏ tr tuyt i Bi : Gii cỏc phng trỡnh: 4) x + = x 5) 3x - = 2x + 7) | x2 + 4x 5| = x 8) 2x + - x = 10) 3x + x - + = 11) x- x2 - x - 6) 2x - - = 5x 9) x2 2x - 2x2 x = 12 ) = Bai 2: Gii cỏc PT sau: iệ g x2 - x- = x t K n h ý P H T T L T PHNG TRèNH CN THC Gii phng trỡnh 1) 3x - = 2x 2) 4x + 2x + - = 3x 4) 3x - 9x + + x - = 5) 2x + - x + = 7) x - 3x + = 2(x 1) 8) 3x - 9x + = x + 3) - 2x = x + 6) x - 4x - - 2x - = 9) 3x + - x+1= T TON - TIN PHNG TRèNH BC HAI Bi Gii cỏc phng trỡnh sau: 1/ x 3x 2/ 2x x 3/ 3x 4/ 2x 6x Bi Cho phng trỡnh x 2(m 1)x m 3m nh mt phng trỡnh: 1/ Cú nghim phõn bit 3/ Cú nghim kộp v tỡm nghim kộp ú g h tớnh nghim cũn li 5/ n T ý L iệ K 2/ Cú nghim (hay cú nghim) 4/ Cú mt nghim bng v T P Cú hai nghim tha 3xH x 4x x 6/ T Cú hai nghim tha x1 3x Bi Cho phng trỡnh x m 1x m 1/ Gii phng trỡnh vi m 2/ Tỡm m phng trỡnh cú nghim kộp Tỡm nghim kộp ú 3/ Tỡm m phng trỡnh cú hai nghim trỏi du 4/ Tỡm m phng trỡnh cú hai nghim tha x12 x 22 CC BI TON XC NH H S CA HM S Bi : Cho hm s y = ax2 + bx + c (P) Hóy xỏc nh cỏc h s a, b, c cỏc trng hp sau : a th (P) i qua im : A( ; 8), B(1 ; 0), C(4 ; 3) t iệ b (P) cú nh S(2 ; 2) v qua im M(4 ; 6) K g c (P) i qua A(4 ; 6), ct trc Ox ti imờ cúnhonh l v h T ý Bi2: Tỡm parabol y = ax2 + bx + 1, L bit parabol ú: T a) i qua im M(1 ; 5)H vPN(-2 ; -1) T b) i qua A(1 ; -3) v cú trc i xng x = c) Cú nh I(2 ; -3) d) i qua B(-1 ; 6), nh cú tung l -3 PHN : BT NG THC - BT PHNG TRèNH Cỏc Bt ng thc c bn Bi 1`:CMR T TON - TIN 1/ Chng minh rng vi mi x ta cú 4x 2/ Chng minh rng: 3x 3/ Tỡm giỏ tr nh nht ca hm s: y 3x 4/ x 7, x 3x 3 vi mi x 2x t iệ K Vi x hóy tỡm giỏ tr nh nht ca biu thc: g B x n h x4 a b b c c a b a a c Bi 2: Cho ba s a, b, c tho 0