Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 CHỌN LỌC VỀ KHOẢNG CÁCH TRONG HÌNH KHÔNG GIAN Thầy Đặng Việt Hùng [ĐVH] – Moon.vn VIDEO BÀI GIẢNG LỜI GIẢI CHI TIẾT CÁC BÀI TẬP có website MOON.VN Câu 1: [ĐVH] Cho hình chóp S.ABCD có đáy hình thoi cạnh 2a , tam giác ABC đều, hai mặt phẳng ( SAB ) ( SAC ) vuông góc với đáy mặt phẳng ( SBC ) tạo với đáy góc 600 Tính khoảng cách đường thẳng sau: a) SA BD b) BD SC Câu 2: [ĐVH] Cho khối chóp S.ABCD có đáy hình chữ nhật ABCD có AB = 2a; AD = a , hình chiếu vuông góc S mặt đáy trung điểm H AB Biết SC tạo với đáy góc 600 , tính khoảng cách đường thẳng SD HC Câu 3: [ĐVH] Cho hình chóp S ABCD có đáy hình vuông cạnh a Hai mặt phẳng ( SAB ) ( SAD ) vuông góc với đáy Biết góc SB mặt phẳng đáy 600 Tính: a) Khoảng cách hai đường thẳng BC SA , AD SB b) Khoảng cách hai đường thẳng BD SC Câu 4: [ĐVH] Cho tứ diện ABCD có cạnh a Gọi M , N , P, Q trung điểm AB, CD, AD, AC a) Chứng minh MN ⊥ PQ Tính khoảng cách hai đường thẳng MN , PQ b) Gọi G trọng tâm tam giác BCD Tính khoảng cách hai đường thẳng AG , BC Câu 5: [ĐVH] Cho hình lập phương ABCDA′B′C ′D′ cạnh a Tính khoảng cách cặp đường thẳng sau: a) AC ′ BD b) AC ′ DA′ Câu 6: [ĐVH] Cho hình chóp S.ABC có đáy tam giác vuông cân C có BC = AC = 3a Hình chiếu vuông góc đỉnh S mặt đáy trung với điểm H cho HC = HA , biết tam giác SAC tam giác vuông S Tính khoảng cách đường thẳng SB AC Câu 7: [ĐVH] Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, tam giác SAB tam giác cạnh 2a thuộc mặt phẳng vuông góc với đáy , biết mặt phẳng ( SCD ) tạo với đáy góc 600 Tính khoảng cách đường thẳng SA BD Câu 8: [ĐVH] Cho hình chóp S ABC có đáy ABC tam giác vuông B, AB = a, BC = 2a , cạnh SA = 2a SA ⊥ ( ABC ) Gọi M , N trung điểm AB, SC a) Chứng minh MN ⊥ AB b) Tính khoảng cách AB, SC Câu 9: [ĐVH] Cho hình chóp S ABCD có đáy hình vuông cạnh a Tam giác SAD nằm mặt phẳng vuông góc với đáy Tính khoảng cách cặp đường thẳng sau: a) AC SB b) AD SB Câu 10: [ĐVH] Cho hình lăng trụ đứng ABC A′B′C ′ có đáy ABC tam giác cân A, BAC = 1200 , AB = BB′ = a Tính khoảng cách cặp đường thẳng sau: a) BB′ AC b) BC AC ′ Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 LỜI GIẢI CHI TIẾT BÀI TẬP Câu 1: [ĐVH] Cho hình chóp S.ABCD có đáy hình thoi cạnh 2a , tam giác ABC đều, hai mặt phẳng ( SAB ) ( SAC ) vuông góc với đáy mặt phẳng ( SBC ) tạo với đáy góc 600 Tính khoảng cách đường thẳng sau: a) SA BD b) BD SC Lời giải: ( SAB ) ⊥ ( ABC ) a) Ta có: ⇒ SA ⊥ ( ABC ) ( SAC ) ⊥ ( ABC ) AI ⊥ BD Gọi I tâm hình thoi ta có: SA ⊥ AI nên AI đường vuông góc chung ta có: AC d ( SA; BD ) = AI = =a BD ⊥ SA b) Ta có: ⇒ BD ⊥ ( SAC ) BD ⊥ AC Dựng IK ⊥ SC ta có IK đường vuông góc chung BD SC Dựng AE ⊥ BC , ta có BC ⊥ SA ⇒ BC ⊥ ( SAE ) ⇒ SEA = 600 Do ∆ABC nên AE = AB sin 600 = a Suy SA = AE tan 600 = 3a AF 1 6a Khi dựng AF ⊥ SC suy IK = Mặt khác = 2+ ⇒ AF = 2 AF SA AC 13 3a Do d ( SC ; BD ) = 13 Câu 2: [ĐVH] Cho khối chóp S.ABCD có đáy hình chữ nhật ABCD có AB = 2a; AD = a , hình chiếu vuông góc S mặt đáy trung điểm H AB Biết SC tạo với đáy góc 600 , tính khoảng cách đường thẳng SD HC Lời giải: Ta có H trung điểm AB nên HA = HB = a Khi HC = HB + BC = a Lại có SCH = 600 ⇔ SH = HC tan 600 = a Dễ thấy HD = HC = a 2; CD = AB = 2a nên tam CH ⊥ DH giác DHC vuông cân H ta có suy CH ⊥ SH CH ⊥ ( SHD ) , dựng HK ⊥ SD suy HK đường vuông góc cung HC SD 1 a Ta có : = + ⇒ HK = 2 HK HD SH a Vậy d = Câu 3: [ĐVH] Cho hình chóp S ABCD có đáy hình vuông cạnh a Hai mặt phẳng ( SAB ) ( SAD ) vuông góc với đáy Biết góc SB mặt phẳng đáy 600 Tính: Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 a) Khoảng cách hai đường thẳng BC SA , AD SB b) Khoảng cách hai đường thẳng BD SC Lời giải: ( SAB ) ∩ ( SAD ) = SA a) Ta có ( SAB ) , ( SAD ) ⊥ ( ABCD ) ⇒ SA ⊥ ( ABCD ) ( SB, ( ABCD ) ) = SBA = 60 AB ⊥ BC Ta có ⇒ AB = d ( SA, BC ) = a AB ⊥ SA Kẻ AH ⊥ SB AD ⊥ SA Ta có ⇒ AD ⊥ ( SAB ) ⇒ AD ⊥ AH AD ⊥ AB SB ⊥ AH ⇒ AH = d ( SB, AD ) AD ⊥ AH Mà AH = AB.sin SBA = a.sin 600 = a a ⇒ d ( SB, AD ) = 2 b) Kẻ Cx / / BD ⇒ d ( BD, SC ) = d ( BD, ( SCx ) ) = d ( O, ( SCx ) ) = d ( A, ( SCx ) ) Kẻ AK ⊥ SC Cx ⊥ SA ⇒ Cx ⊥ ( SAC ) ⇒ Cx ⊥ AK mà AK ⊥ SC ⇒ AK ⊥ ( SCx ) ⇒ AK = d ( A, ( SCx ) ) Ta có Cx ⊥ AC Ta có SA = AB tan SBA = a tan 600 = a , AC = AB + BC = a + a = a 1 1 a a = + = + = ⇒ AK = ⇒ d ( BD, SC ) = 2 AK AS AC 3a 2a 6a 5 Câu 4: [ĐVH] Cho tứ diện ABCD có cạnh a Gọi M , N , P, Q trung điểm AB, CD, AD, AC a) Chứng minh MN ⊥ PQ Tính khoảng cách hai đường thẳng MN , PQ b) Gọi G trọng tâm tam giác BCD Tính khoảng cách hai đường thẳng AG , BC Lời giải: Xét ∆SAC : Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 a) Gọi K trung điễm BC , O giao điễm PK MN Ta có MD = MC ⇒ MN ⊥ DC ⇒ MN ⊥ PQ (1) NA = NB ⇒ MN ⊥ AB ⇒ MN ⊥ KQ ( ) Từ (1) , ( ) ⇒ MN ⊥ ( PQK ) Kẻ OH ⊥ PQ Vì MN ⊥ ( PQK ) ⇒ MN ⊥ OH mà OH ⊥ PQ ⇒ OH = d ( MN , PQ ) Ta có PK = AK − AP = a Tam giác PQK cân Q ⇒ QO ⊥ PK a OQ = PQ − OP = 2 1 1 Xét ∆POQ : = + = 2 2 OH OP OQ 4a ⇒ OH = 2a = d ( MN , PQ ) b) G trọng tâm tam giác BCD ⇒ AG ⊥ ( BCD ) GK ⊥ AG Ta có ⇒ GK = d ( AG, BC ) GK ⊥ BC a a Mà DK = ⇒ GK = DK = = d ( AG, BC ) 3 Câu 5: [ĐVH] Cho hình lập phương ABCDA′B′C ′D′ cạnh a Tính khoảng cách cặp đường thẳng sau: a) AC ′ BD b) AC ′ DA′ Lời giải: a) Gọi O giao điễm AC BD , M trung điễm CC ' Ta có OM / / AC ' ⇒ d ( AC ', BD ) = d ( AC ', ( MBD ) ) = d ( A, ( MBD ) ) = d ( C , ( MBD ) ) Kẻ CH ⊥ MO ⇒ CH = d ( C , ( MBD ) ) Xét ∆OCM : 1 a = + = ⇒ CH = = d ( AC ', BD ) 2 CH CO CM a b) Kẻ AN / / A ' D ⇒ d ( AC ', DA ') = d ( A ' D, ( ANC ') ) = d ( A ', ( ANC ') ) Kẻ A ' E ⊥ C ' N , A ' F ⊥ AE ⇒ A ' F ⊥ ( ANC ') ⇒ A ' F = d ( A ', ( ANC ') ) Xét ∆AEA ' : 1 a = + = ⇒ A' F = = d ( AC ', DA ' ) 2 A' F A' E A' A a Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 Câu 6: [ĐVH] Cho hình chóp S.ABC có đáy tam giác vuông cân C có BC = AC = 3a Hình chiếu vuông góc đỉnh S mặt đáy trung với điểm H cho HC = HA , biết tam giác SAC tam giác vuông S Tính khoảng cách đường thẳng SB AC Lời giải: Ta có: AC = 3a ⇒ HA = a; HC = 2a Lại có ∆SAC vuông tai S có đường cao SH nên ta có: SH = HA = HC = 2a ⇒ SH = a Dựng Bx / / AC , dựng HE ⊥ Bx , HF ⊥ SE Ta có Bx ⊥ SH ⇒ BE ⊥ ( SHE ) ⇒ BE ⊥ HF Mặt khác HF ⊥ SE ⇒ H F ⊥ ( SBE ) Do Bx / / AC ⇒ d ( SB; AC ) = d ( AC ; ( SBE ) ) = d ( H ; ( SBE ) ) = HF 1 = + , HE = BC = 3a suy 2 HF SH HE 3a 22 3a 22 HF = ⇒ ( SB; AC ) = 11 22 Lại có: Câu 7: [ĐVH] Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, tam giác SAB tam giác cạnh 2a thuộc mặt phẳng vuông góc với đáy , biết mặt phẳng ( SCD ) tạo với đáy góc 600 Tính khoảng cách đường thẳng SA BD Lời giải: Gọi H trung điểm AB ta có AH ⊥ AB , mặt khác ( SAB ) ⊥ ( ABCD ) nên SH ⊥ ( ABCD ) Dựng HK ⊥ CD ⇒ CD ⊥ ( SHK ) ⇒ SKH = 600 Ta có: SH = a , mặt khác HK tan 600 = SH Suy HK = a ; SA = AB = 2a Dựng Ax / / BD , dựng HE ⊥ Ax , HF ⊥ SE Ta có Ax ⊥ SH ⇒ AE ⊥ ( SHE ) ⇒ AE ⊥ HF Mặt khác HF ⊥ SE ⇒ H F ⊥ ( SAE ) Do Ax / / ABD ⇒ d ( SA; BD ) = d ( BD; ( SAE ) ) = d ( B; ( SAE ) ) = 2d ( H ( SAE ) ) = HF Dựng HM ⊥ BD; AN ⊥ BD ta có: AB AD 2a HE = HM = AN = = 2 AB + AD 1 3 = + ⇒ HF = 2a ⇒ d = 4a 2 HF SH HE 19 19 Câu 8: [ĐVH] Cho hình chóp S ABC có đáy ABC tam giác vuông B, AB = a, BC = 2a , cạnh Khi đó: SA = 2a SA ⊥ ( ABC ) Gọi M , N trung điểm AB, SC a) Chứng minh MN ⊥ AB b) Tính khoảng cách AB, SC Lời giải: Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 BC ⊥ AB a) Ta có: ⇒ SB ⊥ BC SA ⊥ BC Khi ta có: BN = AN = SC ( tính chất trung tuyến tam giác vuông) Do tam giác NAB cân N có trung tuyến NM suy MN ⊥ AB ( dpcm ) b) Kẻ Cx / / AB ⇒ d ( AB; SC ) = d ( AB; SCx ) = d ( A; ( SCx ) ) CE ⊥ AE ⇒ CE ⊥ AF từ Dựng AE ⊥Cx; AF ⊥ SE Do CE ⊥ SA suy AF ⊥ ( SCE ) Ta có: AE = BC = 2a AE.SA Do d ( AB; SC ) = AF = =a AE + SA2 Câu 9: [ĐVH] Cho hình chóp S ABCD có đáy hình vuông cạnh a Tam giác SAD nằm mặt phẳng vuông góc với đáy Tính khoảng cách cặp đường thẳng sau: a) AC SB b) AD SB Lời giải a) Gọi H trung điểm AD ta có SH ⊥ AD Mặt khác ( SAD ) ⊥ ( ABCD ) ⇒ SH ⊥ ( ABCD ) a Dựng Bx / / AC ⇒ d ( AC ; SB ) = d ( AC ; ( SBx ) ) Trong SH = S A.sin 600 = Gọi G = AO ∩ BH ⇒ G trọng tâm tam giác ABD Khi d ( AC ; ( SBx ) ) = d ( G; ( SBx ) ) = d ( H ; ( SBx ) ) BE ⊥ HE Dựng HE ⊥Bx; HF ⊥ SE Do ⇒ BE ⊥HF BE ⊥ SH từ suy HF ⊥ ( SBE ) Gọi K = AO ∩ HE ta có: 3OB 3a HE = HK + KE = OD + OB = = 2 2 3a 9a ⇒ d ( AC ; SB ) = SH + HE 2 Câu 10: [ĐVH] Cho hình lăng trụ đứng ABC A′B′C ′ có đáy ABC tam giác cân A, BAC = 1200 , AB = BB′ = a Tính khoảng cách cặp đường thẳng sau: a) BB′ AC b) BC AC ′ Lời giải: Khi HF = SH HE = Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học LUYỆN THI THPTQG 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 a) Ta có: BB '/ / CC ' ⇒ BB '/ / ( ACC ') d ( BB '; AC ) = d ( BB '; ACC ') Dựng BE ⊥ AC , mặt khác BE ⊥ CC ' suy BE ⊥ ( ACC ') ⇒ d ( BB '; ( ACC ') ) = BE a b) Dựng Ax / / BC ⇒ d ( BC ; C ' A) = d ( BC ; ( CAx ) ) Mặt khác BE = BA sin BAE = BA sin 600 = = d ( C ; ( C ' Ax ) ) AE ⊥ CE Dựng CE ⊥ Ax; AF ⊥ C ' E Do AE ⊥ CC ' ⇒ AE ⊥CF từ suy CF ⊥ ( C ' AE ) Trong CE = d ( A; BC ) = AB sin ABC = Do CF = CE.CC ' CE + CC ' 2 = a a a ⇒ d ( BC ; AC ') = 5 Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016!