Khóa học LUYỆN ĐỀ ĐẶC BIỆT 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: Lyhung95 ĐỀ THI ĐẶC BIỆT MINH HỌA KÌ THI THPT QUỐC GIA 2016 [Môn Toán – Đề số 01 –Nâng Cao] Thầy Đặng Việt Hùng – Moon.vn VIDEO BÀI GIẢNG LỜI GIẢI CHI TIẾT có website MOON.VN Câu (2,0 điểm) Cho hàm số y = x3 − 3mx + ( m − 1) x − m3 + ( Cm ) ( m tham số) a) Khảo sát biến thiên vẽ đồ thị ( Cm ) với m = b) Gọi d tiếp tuyến điểm cực đại A ( Cm ) Đường thẳng d cắt trục Oy B Tìm m để S ∆OAB = với O gốc tọa độ Câu (1,0 điểm) a) Cho góc α thỏa mãn sin α = 2 π π < α < π Tính giá trị biểu thức P = cos 2α + 3 b) Cho số phức z thỏa mãn điều kiện (1 + 2i ) z + z = 4i − 20 Tìm tọa độ điểm M biểu diễn số phức z ( ) Câu (0,5 điểm) Giải phương trình log x + log 1 − x = log ( ( 2x − ) x +1 − ) 3 x + y + = ( y − x ) y + xy + x + Câu (1,0 điểm) Giải hệ phương trình ( x, y ∈ ℝ ) x + y − 13 y − 14 − x + = ) ( ( 2 Câu (1,0 điểm) Tính tích phân I = ∫ ) x dx x2 + + x2 − Câu (1,0 điểm) Cho hình chóp S ABCD có SA ⊥ ABCD , đáy ABCD hình thang vuông A D, AB = 2a, AD = DC = a Góc mặt phẳng ( SBC ) ( ABCD ) 600 Tính thể tích khối chóp S ABD khoảng cách từ trung điểm I SD đến mặt phẳng ( SBC ) Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD, điểm A ( −1; ) Gọi M , N trung điểm AD CD, E giao điểm BN CM Viết phương trình đường tròn ngoại tiếp tam giác BME, biết BN có phương trình x + y − = B có hoành độ lớn Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz cho điểm M ( 2;1; ) đường thẳng x −1 y + z = = Tính khoảng cách từ M đến ∆ lập phương trình đường thẳng qua M , cắt −1 vuông góc với ∆ Câu (0,5 điểm) Một phòng thi kì thi THPT quốc gia có 50 thí sinh đăng ký dự thi, có 31 em nam 19 em nữ Trong phòng thi có 50 bàn ghế đánh số theo thứ tự từ đến 50 Giám thị ghi số báo danh thí sinh vào bàn cách ngẫu nhiên gọi thí sinh vào phòng thi, tính xác suất để thí sinh dự thi ngồi bàn số bàn số 50 thí sinh nam ∆: Câu 10 (1,0 điểm) Cho x, y số thực thỏa mãn x − + y + + = x + y Tìm giá trị lớn giá trị nhỏ biểu thức P = ( ) 32 + xy x + y x y ( x − y) + ( y − x) + 2 x+ y Tham gia khóa học trực tuyến môn Toán MOON.VN để đạt kết cao kỳ thi THPT Quốc gia 2016!