1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phép co dãn trong mặt phẳng

50 820 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 50
Dung lượng 427,73 KB

Nội dung

Khóa luận tốt nghiệp Khoa Toán LỜI CẢM ƠN Lời đầu tiên, em xin chân thành cảm ơn cô Đinh Thị Kim Thúy trực tiếp hướng dẫn em hoàn thành khóa luận Với lời dẫn, tận tình hướng dẫn cô giúp em vượt qua nhiều khó khăn trình hoàn thành đề tài nghiên cứu Do hạn chế thời gian, kiến thức nên khóa luận không tránh khỏi thiếu sót Em mong có ý kiến đóng góp quý báu thầy cô bạn đọc quan tâm để đề tài hoàn thiện Em xin gửi lời cảm ơn tới thầy, cô tổ Hình Học thầy cô khoa Toán tạo điều kiện giúp đỡ em hoàn thành khóa luận, suốt thời gian học tập nghiên cứu Cuối em xin bày tỏ lòng biết ơn tới gia đình bạn bè giúp đỡ động viên em nhiều trình học tập để em thực tốt khóa luận Em xin chân thành cảm ơn Hà Nội, tháng 05 năm 2013 Sinh viên Nguyễn Thị Thùy Nguyễn Thị Thùy Lớp K35B Khóa luận tốt nghiệp Khoa Toán LỜI CAM ĐOAN Tôi xin cam đoan khóa luận công trình nghiên cứu riêng Trong nghiên cứu, kế thừa thành nghiên cứu nhà khoa học, nhà nghiên cứu với trân trọng biết ơn Những kết nêu khóa luận chưa công bố công trình khác Hà Nội, tháng 05 năm 2013 Sinh viên Nguyễn Thị Thùy Nguyễn Thị Thùy Lớp K35B Khóa luận tốt nghiệp Khoa Toán MỤC LỤC Nội dung Lời nói đầu Chương 1: Một số kiến thức phép biến hình mặt phẳng Chương 2: Phép co - dãn mặt phẳng 2.1 Định nghĩa 2.2 Các tính chất phép co – dãn 2.3 Áp dụng phép co - dãn để giải toán 13 2.3.1 Các toán định tính 13 2.3.2 Các toán quỹ tích 23 Chương 3: Bài tập đề nghị 36 Kết luận 46 Tài liệu tham khảo 47 Nguyễn Thị Thùy Lớp K35B Khóa luận tốt nghiệp Khoa Toán LỜI NÓI ĐẦU Phép biến hình phẳng không cung cấp cho học sinh công cụ để giải toán mà tập cho học sinh làm quen với phương pháp tư suy luận mới, biết nhìn nhận việc tượng xung quanh sống với vận động biến đổi chúng để nghiên cứu, tìm tòi, khám phá, tạo sở cho đời phát minh sáng tạo tương lai Ví dụ trước đây, cần chứng minh hai tam giác nhau, học sinh thường phải chứng minh cạnh góc hai tam giác thỏa mãn điều kiện nêu định lí nói hai tam giác Sau học phép biến hình mặt phẳng người ta định nghĩa hai tam giác tổng quát hai hình phẳng sau: "Hình H gọi hình H ' có phép dời hình mặt phẳng biến hình H thành hình H ' " Như khái niệm "bằng nhau" hai hình phẳng xây dựng dựa khái niệm phép dời hình phép biến hình Nhiều khái niệm tương tự hình học hai hình đồng dạng với xây dựng sở phép biến hình tương ứng chúng phép đồng dạng Hơn việc lựa chọn công cụ giải toán thích hợp cho loại toán hình học khác việc làm cần thiết, giúp tiết kiệm thời gian công sức để giải toán cách hiệu Với lòng đam mê toán học hướng dẫn tận tình cô Đinh Thị Kim Thúy em định chọn đề tài cho là: "Phép co - dãn mặt phẳng" Có nhiều toán, phương pháp giải toán hay xoay quanh phép co - dãn mặt phẳng bước đầu làm quen với Nguyễn Thị Thùy -1- Lớp K35B Khóa luận tốt nghiệp Khoa Toán việc nghiên cứu khoa học thời gian nghiên cứu nên khuôn khổ khóa luận em xin trình bày số vấn đề sau: Chương 1: Một số kiến thức phép biến hình mặt phẳng Chương 2: Phép co - dãn mặt phẳng Chương 3: Bài tập đề nghị Nguyễn Thị Thùy -2- Lớp K35B Khóa luận tốt nghiệp Khoa Toán CHƯƠNG 1: MỘT SỐ KIẾN THỨC CƠ BẢN VỀ PHÉP BIẾN HÌNH TRONG PHẲNG 1.1 Khái niệm phép biến hình mặt phẳng 1.1.1 Thế hình? Trước nghiên cứu phép biến hình cần đưa khái niệm "hình" hiểu theo nghĩa toán học Các môn toán học thường xây dựng dựa lí thuyết tập hợp, khái niệm "hình" hiểu với nghĩa "một tập hợp" Như toàn thể không gian hay toàn thể mặt phẳng hình Ngoài tập hợp có phần tử điểm tập hợp phần tử (tập hợp trống) "hình" Cách hiểu "hình" theo nghĩa chứa đựng nội dung "hình" theo nghĩa thông thường hình tam giác, hình tứ giác, hình tròn Việc hiểu hình theo nghĩa tập hợp giúp ta hiểu thêm số khái niệm khác có liên quan đến lí thuyết tập hợp giao hai hình hay nhiều hình, hợp hình, điểm A thuộc hình H , tập hợp B tập tập C phận tập C Do lập luận dùng kí hiệu lí thuyết tập hợp như: - Điểm A thuộc đường thẳng d kí hiệu: A  d - Điểm M giao điểm hai đường thẳng a b kí hiệu: M  a  b , v…v Việc hiểu "hình" tập hợp điểm giúp trừu tượng hóa, khái quát hóa khái niệm mang lại nhiều thuận tiện việc nghiên cứu hình học phép biến hình có điều Nguyễn Thị Thùy -3- Lớp K35B Khóa luận tốt nghiệp Khoa Toán kiện sử dụng công cụ lí thuyết tập hợp để lập luận chứng minh 1.1.2 Phép biến hình Ta kí hiệu tất điểm thuộc mặt phẳng P Khi hình H mặt phẳng tập P kí hiệu: H  P a) Định nghĩa Một song ánh f : P  P từ tập điểm P lên gọi phép biến hình mặt phẳng (Ta kí hiệu P mặt phẳng) Như cho phép biến hình f : P → P cho quy tắc để với điểm M  P, ta tìm điểm M '  f ( M ) hoàn toàn xác định thỏa mãn hai điều kiện sau đây: i) Nếu M , N hai điểm P f ( M ), f ( N ) hai điểm phân biệt P ii)Với điểm M ' thuộc P có điểm M  P, cho f ( M )  M ' Điểm f ( M ) gọi ảnh điểm M qua phép biến hình f Ngược lại điểm M gọi tạo ảnh điểm f ( M ) qua phép biến hình f nói Người ta nói phép biến hình f biến điểm M thành điểm f ( M ) ta có f ( M )  M ' Nếu H hình P ta xác định tập hợp f ( H )   f ( M ) / M  H  Khi f ( H ) gọi ảnh hình H qua phép biến hình f hình H gọi tạo ảnh hình f ( H ) qua phép biến hình f Nguyễn Thị Thùy -4- Lớp K35B Khóa luận tốt nghiệp Khoa Toán b) Sự xác định phép biến hình Muốn xác định phép biến hình f : P  P ta cần nêu rõ quy tắc f cách sau đây: Quy tắc f xác định phép dựng hình mặt phẳng như: tìm giao điểm hai đường thẳng xác định đó, dựng đường thẳng qua điểm vuông góc với đường thẳng cho trước, dựng đường tròn với tâm bán kính cho Quy tắc f xác định biểu thức liên hệ tọa độ ( x; y ) điểm M ' với tọa độ ( x '; y ') điểm M '  f ( M ) hệ tọa độ Oxy cho trước Thí dụ phép biến hình f cho hệ thức: x '  x  y'  y Phép biến hình gọi phép đối xứng qua tâm O hệ tọa độ Oxy nói c) Ví dụ Ví dụ 1: Δ Cho đường thẳng ∆ thuộc mặt phẳng P Phép biến hình biến điểm M thành điểm M ' qua ∆ gọi phép đối xứng trục Đường thẳng ∆ gọi trục đối M M' xứng Phép đối xứng trục ∆ kí hiệu Hình ZO Ta có Z O ( M ) = M ' (Hình 1) Nguyễn Thị Thùy -5- Lớp K35B Khóa luận tốt nghiệp Khoa Toán Ví dụ 2: Trong mặt phẳng P cho điểm O cố định Phép biến hình biến điểm M thành điểm M ' đối xứng với M qua O gọi phép đối xứng tâm O Điểm O gọi tâm phép đối xứng Phép đối xứng tâm O thường kí hiệu là: Z O Ta có : Z O ( M ) = M ' (Hình 2) O M' M Hình d) Điểm bất động phép biến hình Một điểm M  P điểm bất động (hoặc điểm kép) phép biến hình f f ( M )  M Như điểm M điểm bất động phép biến hình f điểm M biến thành qua phép biến hình f Đối với phép đối xứng trục Z O , điểm nằm trục đối xứng ∆ điểm bất động, điểm lại P điểm bất động Đối với phép đối xứng tâm Z O có tâm đối xứng O điểm bất động   Đối với phép tịnh tiến Tv mà v  , ta điểm bất động   Nếu v = , điểm P bất động ta có phép Tv phép đồng Đối với phép đồng e : P  P , điểm P điểm bất động Nguyễn Thị Thùy -6- Lớp K35B Khóa luận tốt nghiệp Khoa Toán 1.2.3 Tích hai phép biến hình Trong hình học ta thường phải thực nhiều phép biến hình liên tiếp với Nếu ta dùng phép biến hình f : P → P để biến điểm M P thành điểm M ' lại dùng tiếp phép biến hình thứ hai g : P → P để biến M ' thành M '' Ta có M '  f ( M ) M ''  g ( M ') Khi phép biến hình h biến M thành M '' gọi tích hai phép biến hình f g kí hiệu h  g ◦ f Ta có: h( M )  ( g ◦ f )( M )  M ''  g ( M ')  g  f ( M ) Ta cần lưu ý kí hiệu g ◦ f kết việc thực liên tiếp hai phép biến hình: phép thứ f phép thứ hai g Nói chung tích g ◦ f tích f ◦ g hai phép biến hình khác Ví dụ 1: Xét hai phép biến hình hai phép tịnh tiến Tu Tv Giả sử M điểm P Gọi M '  Tu ( M ) M ''  Tv ( M ') Theo định nghĩa phép tịnh tiến ta có :   u + v   Như tích Tv  Tu phép tịnh tiến theo vectơ u + v  MM ' =  u , Nguyễn Thị Thùy  M ' M '' =  v    MM '' = MM ' + M ' M '' = -7- Lớp K35B Khóa luận tốt nghiệp Khoa Toán xA  yB 5xB  xB x   xB  xM        y  yA  yB  5 yB  yB y   y M  B  2 (2) x2 y2  1 Thay (2) vào (1) ta được: Vậy tập hợp trung điểm M thuộc Elíp ( E ) có phương trình: x2 y   y B O I M x B1 A b) Giả sử đường thẳng ( d ) qua điểm I (4; 8) có hệ số góc k có phương trình là: y  k ( x  4)  Phép dãn trục Ox tỉ số k = biến điểm M ( x; y) thành điểm M ( x1 ; y1 ) cho : Nguyễn Thị Thùy - 33 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán  x1  x    y1  y biến: 2 Elíp ( E ) thành đường tròn (C ) : x1  y1  Đường thẳng ( d ) thành đường thẳng ( d1 ) có phương trình: ( d1 ) : y  k ( x  4)  ( d1 ) chứa điểm I1 (4; 12), C1 , D1 , N1 theo thứ 3 tự ảnh I , C , D , N qua phép dãn FOx ( ) ( d1 ) : y  k ( x  4)  ( d1 ) chứa điểm I1 (4; 12), C1 , D1 , 3 N1 theo thứ tự ảnh I , C , D , N qua phép dãn FOx ( ) Ta có N1 nhìn OI1 góc vuông N1 thuộc đường tròn ( S1 ) đường kính OI1 có phương trình: 2 ( S1 ) : (x1  2)  ( y1  6)  40 Vậy N thuộc Elíp ( E1 ) tạo ảnh ( S1 ) với phép dãn FOx ( ) : 2 ( E1 ) : (x 2) ( y 6)  40 Nguyễn Thị Thùy - 34 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán ( x  2)2 ( y  4)2   1 160 40 c) Phép dãn FOx ( ) biến: Điểm K thành điểm K1 Đường thẳng (OP) thành đường thẳng (OP1 ) có hệ số góc kP = ' k P Đường thẳng (OQ ) thành đường thẳng (OQ1 ) có hệ số góc kQ = ' 9 (  )=-1  (OP1 )  (OQ1 )  K1 P1  k P kQ = kQ  k P k Q = 4 ' ' K1Q1  OK1 =  K1 thuộc đường tròn ( S ) tâm O bán kính R = 2 , có phương trình là: x1  y1  18 Vậy N thuộc Elíp ( E2 ) tạo ảnh ( S ) qua phép dãn FOx ( ) : x2  Nguyễn Thị Thùy x2 y2 y  18   1 18 12 - 35 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán CHƯƠNG 3: BÀI TẬP ĐỀ NGHỊ Bài 1: Tìm ảnh đường thẳng ( d ) qua phép co f tỉ số k , biết: a) ( d ) : 3x  y   0, k  b) (C ) : x  y  , k  Bài 2: x2 y   Chứng minh phép co Ox có hệ số Cho Elíp ( E ) : 16 góc k = biến Elíp thành đường tròn Bài 3: Tìm giá trị lớn dện tích tam giác nội tiếp Elíp ( E ) : x2 y2  1 Xác định tọa độ đỉnh B , C biết A (2; 1) Bài 4: Trong mặt phẳng ( P) cho đường tròn (C ) tâm O bán kính a Một mặt phẳng (Q ) hợp với ( P) góc nhọn  Tìm ảnh (C ) qua phép chiếu vuông góc từ ( P) xuống (Q ) Nguyễn Thị Thùy - 36 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán Bài 5: x2 y2   Gọi A , B hai đỉnh trục lớn, M Cho Elíp ( E ) : điểm di động Elíp ( E ) H trực tâm tam giác MAB Tìm tập hợn điểm M Bài 6: x2 y Cho Elíp ( E ) :   a b Chứng minh điều kiện cần đủ để đường thẳng ( d ) : Ax  By  C  ( A2  B  0) tiếp xúc với Elíp là: C  A2 a  B 2b Áp dụng cho toán sau: x2 y Cho Elíp ( E ) :   đường thẳng ( d ) : x  y   a Chứng minh ( d ) cắt Elíp ( E ) điểm phân biệt A , B Tính độ dài AB b Tìm tọa độ điểm C thuộc Elíp ( E ) cho ∆ ABC có diện tích lớn Bài 7: Cho ∆ ABC có diện tích lớn nội tiếp Elíp ( E ) Xác định tọa độ đỉnh B , C biết: a ( E ) : x  25 y  100 A(0; b ( E ) : ) ( x  1) ( y  1)   A(2; 4) 12 Bài 8: Trên đường cong Elíp ( E ) ta lấy điểm A, B Gọi I trung điểm đoạn AB MN PQ dây cung ( E ) qua I ( M Nguyễn Thị Thùy - 37 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán P nằm phía với AB) Các dây cung NP MQ cắt AB tương ứng K H Chứng minh IK  IH Bài 9: Hai đường thẳng ( d1 ), (d ) tạo với chiều dương trục ( d ) góc có hệ số tương ứng a1 a2 Gọi ( d1' ) (d 2' ) ảnh ( d1 ) ( d ) phép biến đổi Fd ( k ) ,  góc tạo hai ảnh Chứng minh tg   k (a1  a2 ) k  a1a2 Bài 10: Cho tam giác ABC Chứng minh tồn hai phép co - dãn F1 F2 cho F  F1.F2 biến tam giác ABC thành tam giác vuông cân A ' B ' C ' Hướng dẫn Bài 1: x '  x  a) Phép dãn FOx (3) : M → M ' cho:   y '  3y x  x '   y'  y  Suy ra: ( d ) : 3x  y   biến thành đường thẳng ( d ') : 3x ' y' 9  b) Gọi M '( x '; y') ảnh M qua phép dãn tỉ số k  thỏa mãn: x '  x    y '  3y M  (C )  x '2  ( x  x '   y'  y  y' ) 9 Bài 2: Nguyễn Thị Thùy - 38 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán Gọi M '( x '; y') ảnh M qua phép dãn tỉ số k = x '  x    y '  y  mãn: thỏa x  x '   y '  y  x2 y M  ( E )     x '2  y '2  16 16 Vậy ảnh elip ( E ) đường tròn (C ) có phương trình: x '2  y '2  16 Bài 3: Phép dãn FOx ( 2  2) A1 y biến: • Điểm M ( x; y) thành A điểm M ( x1 ; y1 ) thỏa mãn: x O C C1  x  x1  x1  x    y1  y1  y  y   B1 • Elip ( E ) thành đường tròn (C ) : x12  y12  • ∆ ABC thành ∆ A1 B1C1 nội tiếp đường tròn (C ) : x12 + y12 = điểm A (2; 1) thành A1 (2; 2) Ta có: S A1B1C1  2S Vậy Max S ABC ABC S ABC  S A1B1C1 3 = 3 đạt ∆ A1 B1C1 • Ta xác định tọa độ đỉnh B1 , C1 Nguyễn Thị Thùy - 39 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán Gọi A1' điểm đối xứng với A1 qua O  Tọa độ điểm A1' (-2; -2) Phương trình đường tròn (C1 ) tâm A1' (-2; -2) bán kính R  2 có phương trình là: (x + 2)2 + (y + 2)2 = Khi đó: (C )  (C1 ) = B1 , C1 , tọa độ B1 , C1 nghiệm hệ phương trình: 2  B1 (1  3; 1  3)  x2  y   x  y       2 ( x  2)  ( y  2)   x  y   C1 (1  3; 1  3) Bài 4: Trên mặt phẳng ( P) chọn hệ trục Oxy cho Ox phương với giao tuyến ( P ) (Q) , chọn hệ trục O1 x1 y1 hình chiếu Oxy xuống (Q) Đường tròn (C ) tâm O bán kính a có phương trình: x2  y  a2 Qua phép chiếu vuông góc từ ( P ) xuống (Q) biến điểm M ( x; y) thành điểm M ( x1 ; y1 ) thỏa mãn:  x1  x   y1  y cos Đặt b = a c os   acos  b từ : a  x1  x   b  y  a y Gọi ( E ) ảnh đường tròn (C ) qua phép co cho Ta có: M ( x1 ; y1 )  ( E )  M ( x; y)  (C )  x  y  a Nguyễn Thị Thùy - 40 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán x1 y12 a y12  x1   a    b a b Vậy ảnh đường tròn (C ) qua phép chiếu vuông góc Elíp ( E ) có phương trình là: x1 a2 y12  b2  y (C) x O d P Q O1 x1 (E) y1 Bài 5: H trực tâm ∆ MAB nên MH  AB  MH  Ox  xM  xH Ta có: A (-2; 0), B (2; 0), H ( xH ; y H )  MA  (2  xM ;  yM )  MB  (2  xM ;  yM )  HB  (2  xH ;  yH ) MA  HB  (22  xM2 )  yM yH  xM2 yM2   (1) xM2  xM2 y y yM     M H 4  yM  y H M  elip (E)  Vậy: xH  xM ; yH  yM Nguyễn Thị Thùy - 41 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán Suy H ảnh M qua phép dãn trục Ox với tỉ số k =  xH2 yH2  1 16 x2 y 1 Vậy tập hợp điểm H Elíp có phương trình:  16 Bài 6: Sử dụng phép dãn trục Ox với tỉ số k  a biến: b x '  x  - Điểm M ( x; y) thành điểm M '( x '; y') thỏa mãn:  a y '  y  b - Elíp ( E ) : x2 y   thành đường tròn (C ) : x '2  y '2  a (1) a b b - ( d ) : Ax  By  C  thành (d ') : Ax ' B y ' C  a (2)  Bb y ' C Giả sử A  Từ (2) suy ra: x '  a thay vào (1) ta phương A trình: ( B 2b  a A2 ) y '2  BbCay ' C 2a  a A2  (3)   A2C a  a A2 B 2b  a A4 Đường thẳng ( d ) tiếp xúc với Elíp ∆ = Do suy ra: C  A2 a  B 2b Hệ quả: - ∆ > ( d ) cắt Elíp điểm phân biệt, tức là: A2 a  B 2b  C  - ∆ < ( d ) không cắt Elíp Áp dụng: Nguyễn Thị Thùy - 42 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán a Ta có: a A2  B 2b - C2  8.1  4.2   12  suy đường thẳng ( d ) cắt Elíp ( E ) điểm phân biệt Tìm tọa độ giao điểm Xét hệ phương trình tạo ( d ) ( E ) :  x2 y 2 2   1  A(  1, ), B(   1, ) 8 2 x  y    AB  b Sử dụng phép dãn FOx (2) ta dễ dàng tìm tọa độ C (2;  2) Bài 7: Ta sử dụng phép dãn FOx ( ) biến Elíp ( E ) thành đường tròn (C ) : 1 x'2  y '2  25 , điểm A(0; ) thành A '(0; ) , ABC thành A ' B ' C ' nội tiếp đường tròn (C ) Ta có: Δ A ' B ' C ' có diện tích lớn Δ A ' B ' C ' Từ ta tìm đỉnh B , C b Tương tự câu a Bài 8: Tồn phép dãn Fd (k ) biến Elíp ( E ) thành đường tròn (C ) , dây AB thành dây A ' B ' , điểm I thành I ' trung điểm A ' B ' , điểm K thành K ' , H thành H ' dây MN thành M ' N ' , PQ thành P ' Q ' Ta chứng minh đường tròn (C ) đoạn I ' K '  I ' H ' Vì IK  IH Nguyễn Thị Thùy - 43 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán P' P M B M' H A K I H' K' N B' I' A' N' Q Q' Bài 9: Ta chứng minh phép biến đổi Fd (k ) biến đường thẳng (d ) có phương trình y  ax  b thành đường thẳng (d ') có phương trình y  a ' x  b ' ( a '  ka ) Thật với điểm M (x; y)  (d), ảnh M (x; y) điểm M '(x'; ky') thuộc (d ') ta có ky  a ' x  b Điều chứng tỏ a '  ka Nếu ( d1 ) ( d ) có hệ số góc a1 a2 xét hệ tọa độ Oxy cho (d ) trùng với trục Ox , ảnh (d1' ) (d 2' ) hai đường thẳng có hệ số góc tương ứng ka1 ka2 Theo công thức tính góc ta có: tg   ka1  ka2  k a1a2 Bài 10: Ta coi BAC góc lớn tam giác ABC kẻ phân giác Ax BAC Từ B ta hạ BH vuông góc với Ax tia HB ta lấy điểm B ' cho AB ' tạo với Ax góc 450 Phép co (dãn) F1 trục Ax biến B thành B ' C thành C ' , tia AC ' tạo với Ax góc 450 tam giác AB ' C ' vuông A Ta thực phép Nguyễn Thị Thùy - 44 - Lớp K35B Khóa luận tốt nghiệp co (dãn) F2 trục AB ' , hệ số k  Khoa Toán AB ' , biến C thành C '' Tam giác AC ' AB ' C '' vuông cân A Nguyễn Thị Thùy - 45 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán KẾT LUẬN Trên toàn đề tài: "Phép co - dãn mặt phẳng" Đối với mục đích nghiên cứu đề tài hoàn thành nhiệm vụ đặt Nghiên cứu phép co - dãn đưa hai dạng toán phẳng sử dụng phép co - dãn là: toán định tính toán quỹ tích Trong đó, chủ yếu nghiên cứu toán liên quan tới Elíp, chuyển toán Elíp sang đường tròn, đưa toán dạng đơn giản Mặc dù có nhiều cố gắng tìm tòi nghiên cứu khả thời gian có hạn nên đề tài tránh thiếu sót Vì em mong bảo, đóng góp ý kiến thầy cô giáo bạn sinh viên để đề tài hoàn chỉnh Nguyễn Thị Thùy - 46 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán TÀI LIỆU THAM KHẢO Nguyễn Mộng Hi (1996), Các phép biến hình mặt phẳng NXBGD Lê Hồng Đức, Lê Hữu Trí (2008), Phương pháp giải toán hình học phẳng - NXB Hà Nội Lê Hồng Đức (2006), Giải toán hình học 10 - NXB Hà Nội Đỗ Thanh Sơn (2005), Phương pháp giải toán hình học phẳng 10 NXB Đại Học quốc gia Hà Nội Đỗ Thanh Sơn (2005), Chuyên đề bồi dưỡng học sinh giỏi toán trung học phổ thông - Phép biến hình phẳng - NXBGD Trần Bá Hà (2011), Tổng ôn tập kiến thức Toán - Phần hình học NXB Đại Học quốc gia Hà Nội Nguyễn Thị Thùy - 47 - Lớp K35B [...]... là phép co  Nếu k  1 thì Fd (k ) được gọi là phép đồng nhất (d ) được gọi là trục co hoặc trục dãn M M' (d) H 2.2 Các tính chất của phép co - dãn a) Phép co - dãn Fd (k ) : (d ) → (d ) Nguyễn Thị Thùy -9- Lớp K35B Khóa luận tốt nghiệp Khoa Toán    Thật vậy: Nếu M  (d ) thì (d ) MM ' = k MM ' = 0 suy ra M  M ' b) Nếu A, B, C là ba điểm thẳng hàng thì ảnh của ba điểm đó trong phép co. .. Khoa Toán CHƯƠNG 2: PHÉP CO - DÃN TRONG MẶT PHẲNG 2.1 Định nghĩa Cho đường thẳng (d ) và số k  0 Với mỗi điểm M ( M không   thuộc (d ) ) ta dựng điểm M ' sao cho HM ' = k HM , trong đó H là chân đường vuông góc hạ từ M xuống (d ) , khi đó ta nói M ' là ảnh của M trong phép co - dãn về trục (d ) với hệ số k và kí hiệu Fd (k ): M  M ' Nếu k  1 thì Fd (k ) được gọi là phép dãn  Nếu k  1... Như vậy tích các phép biến hình nói chung không có tính chất giao hoán 1.2.4 Phép biến hình đảo ngược Trong mặt phẳng cho phép biến hình f biến điểm M thành điểm M ' Ta có f ( M )  M ' Khi đó phép biến hình biến điểm M ' thành điểm M gọi là phép biến hình đảo ngược của phép biến hình f đã cho và kí hiệu là f 1 Ta có: f 1 ( M ')  M Rõ ràng là mỗi phép biến hình f có duy nhất một phép biến hình... một phía với (d ) TH3: Tam giác ABC bất kì Ta dễ dàng chứng minh được S '  kS d) Tồn tại phép co - dãn Fd ( k ) biến một đường tròn thành một Elíp và nếu (d ) trùng trục cuả Elíp thì tồn tại một phép co - dãn biến Elíp thành đường tròn x2 y2 Trong hệ trực chuẩn, đường cong có phương trình: 2  2  1 a b trong đó a  b  0 hoặc 0  a  b được gọi là Elíp Các số thực a , b được gọi là các bán trục... cách thực hiện phép co FOx ( ) : b a M (x; y)  M '(x'; y') ; x '  x và y ' = y , biến Elíp: b trong đó a  b  0 thành đường tròn: x2 y 2  1 a2 b2 x'2 y'2  a2 2.3 Áp dụng phép co - dãn để giải toán 2.3.1.Các bài toán định tính Ví dụ 1: x2 y 2 Trong hệ tọa độ trực chuẩn Oxy cho Elíp ( E ) : 2  2  1 a b (a  b  0) và tam giác ABC nội tiếp trong elip ( E ) (3 đỉnh nằm trên đường cong) Chứng minh... ta có f  f 1  f 1  f  e (phép đồng nhất) Thí dụ phép tịnh tiến Tv có phép hình đảo ngược là phép tịnh tiến T 1  v và ta có T v 1 = Tv 1.2.5 Phép biến hình có tính chất đối hợp Cho một phép biến hình f biến điểm M thành điểm M ' , sau đó nếu ta thực hiện tiếp phép biến hình f đó đối với điểm M ' và giả sử f ( M ')  M '' Nếu điểm M ''  M thì ta nói rằng phép biến hình f đó có tính chất... song song hoặc cùng nằm trên một đường thẳng, A ' B ' và C ' D ' là ảnh của chúng trong phép co - dãn thì A ' B ' và C ' D ' cùng phương và A ' B ' AB  C ' D ' CD Dựa vào tính chất b ở trên ta dễ dàng chứng minh được điều này c) Giả sử tam giác ABC có diện tích S , Δ A ' B ' C ' là ảnh của tam giác ABC trong phép co - dãn Fd ( k ) và có diện tích S ' , khi đó S '  kS Ta xét 3 trường hợp sau đây:... 25 9 25 9 Vậy ảnh của (E) qua phép dãn FOx ( 2 ) là Elíp ( E ') có phương x '2 y '2   1 trình: 25 18 Ví dụ 5: 2 2 Cho đường tròn (C ) có phương trình: (x 1)  ( y  2)  4 Tìm ảnh của đường tròn (C ) qua phép co về trục Ox với tỉ số k = 1 2 Nguyễn Thị Thùy Lớp K35B - 18 - Khóa luận tốt nghiệp Khoa Toán Giải: Gọi điểm M '(x'; y') là ảnh của điểm M (x; y) qua phép co với tỉ số k = 1 2 x '  x... biểu thức ta được phương trình dạng f ( x; y) = 0 Đó chính là phương trình quỹ tích điểm M ( x; y) Trong trường hợp bài toán có điều kiện ràng buộc chúng ta cần hạn chế quỹ tích Ở đây ta sử dụng các phép biến hình đặc cụ thể là phép co - dãn để chuyển bài toán quỹ tích Elíp về bài toán quỹ tích đường tròn, trong nhiều trường hợp tỏ ra rất hiệu quả, đưa bài toán phức tạp về bài toán đơn giản.Ta xét các... 1) Giải: Đặt: k  a 2 2  2 b 2 y B1 A1 B C O A x C1 Phép dãn FOx (2) biến: Nguyễn Thị Thùy - 21 - Lớp K35B Khóa luận tốt nghiệp Khoa Toán  x1  x Điểm M ( x; y) thành điểm M 1 ( x1 ; y1 ) thỏa mãn:   y1  2 y 2 2 Elíp ( E ) thành đường tròn (C ) : x  y  8 ∆ ABC thành ∆ A1 B1C1 nội tiếp trong đường tròn (Điểm A (2; 1) nên ảnh của nó qua phép dãn với tỉ số k = 2 là điểm A1 (2; 2)) Ta có: S∆ A1B1C1 ... 1: Một số kiến thức phép biến hình mặt phẳng Chương 2: Phép co - dãn mặt phẳng 2.1 Định nghĩa 2.2 Các tính chất phép co – dãn 2.3 Áp dụng phép co - dãn để giải toán ... "Phép co - dãn mặt phẳng" Đối với mục đích nghiên cứu đề tài hoàn thành nhiệm vụ đặt Nghiên cứu phép co - dãn đưa hai dạng toán phẳng sử dụng phép co - dãn là: toán định tính toán quỹ tích Trong. .. điểm thuộc mặt phẳng P Khi hình H mặt phẳng tập P kí hiệu: H  P a) Định nghĩa Một song ánh f : P  P từ tập điểm P lên gọi phép biến hình mặt phẳng (Ta kí hiệu P mặt phẳng) Như cho phép biến

Ngày đăng: 31/10/2015, 08:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w