1. Trang chủ
  2. » Luận Văn - Báo Cáo

chuyên để vật lí vận dụng giản đồ véc tơ trong giải một số dạng toán điện xoay chiều

34 700 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 8,94 MB

Nội dung

MỤC LỤC A. Mở đầu…………………………………………………………...........................2 I. Lý do chọn đề tài…………………………………………….............................2 II.Mục đích nghiên cứu……………………………...……...…............................3 III. Nhiệm vụ nghiên cứu………………………….…………...............................4 IV. Phương pháp nghiên cứu…….……………….………...….............................4 V. Phạm vi áp dụng……………………………….…………..........................….4 B. NỘI DUNG ÁP DỤNG………………………….….…….............................…..5 I. Lý thuyết về mạch điện xoay chiều…………….….…….............................…..5 1. Dòng điện xoay chiều……….………………….…….........................……...5 2. Phương pháp giản đồ véc tơ…………………….…..........................…......…7 2.1. Quy tắc cộng véc tơ…………………………..........................…..…...…....7 2.2 Cơ sở vật lý của phương pháp giản đồ véc tơ…..............................….….....8 II. Bài tập áp dụng………………………………………......................................12 1. Bài toán U và I………………………………………............................…....12 1.1 Bài tập có hướng dẫn................................................................................12 1.2. Bài tập tự giải...........................................................................................17 2. Bài toán hộp đen……………………………………............................…….19 2.1 Bài toán trong mạch điện có chứa một hộp kín.........................................19 1 2.2. Bài toán trong mạch điện có chứa hai hộp kín.........................................21 2.3. Bài tập có hướng dẫn...............................................................................24 2.4. Bài tập tự giải..........................................................................................26 3. Bài toán khảo sát U và I theo L và C…………...........................……….....28 3.1. Biện luận điện áp theo ..........................................................................28 3.2. Biện luận điện áp theo C........................................................................30 3.3. Bài tập tự giải........................................................................................31 C. KẾT LUẬN ….........……………………………………………………………………….…33 TÀI LIỆU THAM KHẢO...............................................................................................................34 2 A. MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Môn Vật lý là một bộ phận khoa học tự nhiên nghiên cứu về các hiện tượng vật lý nói chung và điện học nói riêng. Những thành tựu của vật lý được ứng dụng vào thực tiễn sản xuất và ngược lại chính chính thực tiễn sản xuất đã thúc đẩy khoa học vật lý phát triển. Vì vậy học vật lý không chỉ đơn thuần là học lý thuyết vật lý mà phải biết vận dụng vật lý vào thực tiễn sản xuất. Do đó trong quá trình giảng dạy người giáo viên phải rèn luyện cho học sinh có được những kỹ năng, kỹ xảo và thường xuyên vận dụng những hiểu biết đã học để giải quyết những vấn đề thực tiễn đặt ra. Bộ môn vật lý được đưa vào giảng dạy trong nhà trường phổ thông nhằm cung cấp cho học sinh những kiến thức phổ thông, cơ bản, có hệ thống toàn diện về vật lý. Hệ thống kiến thức này phải thiết thực và có tính kỹ thuật tổng hợp và đặc biệt phải phù hợp với quan điểm vật lý hiện đại. Để học sinh có thể hiểu được một cách sâu sắc và đủ những kiến thức và áp dụng các kiến thức đó vào thực tiễn cuộc sống thì cần phải rèn luyện cho các học sinh những kỹ năng, kỹ xảo thục hành như: Kỹ năng, kỹ xảo giải bài tập, kỹ đo lường, quan sát …. Bài tập vật lý với tư cách là một phương pháp dạy học, nó có ý nghĩa hết sức quan trọng trong việc thực hiện nhiệm vụ dạy học vật lý ở nhà trường phổ thông. Thông qua việc giải tốt các bài tập vật lý các học sinh sẽ có được những những kỹ năng so sánh, 3 phân tích, tổng hợp … do đó sẽ góp phần to lớn trong việc phát triển tư duy của học sinh. Đặc biệt bài tập vật lý giúp học sinh cũng cố kiến thúc có hệ thống cũng như vận dụng những kiến thức đã học vào việc giải quyết những tình huống cụ thể, làm cho bộ môn trở nên lôi cuốn, hấp dẫn học sinh hơn. Hiện nay, trong xu thế đổi mới của ngành giáo dục về phương pháp giảng dạy cũng như phương pháp kiểm tra đánh giá kết quả giảng dạy và thi tuyển. Cụ thể là phương pháp kiểm tra đánh giá bằng phương tiện trắc nghiệm khách quan. Trắc nghiệm khách quan đang trở thành phương pháp chủ đạo trong kiểm tra đánh giá chất lượng dạy và học trong nhà trường Trung học phổ thông. Điểm đáng lưu ý là nội dung kiến thức kiểm tra tương đối rộng, đòi hỏi học sinh phải học kĩ, nắm vững toàn bộ kiến thức của chương trình, tránh học tủ, học lệch và để đạt được kết quả tốt trong việc kiểm tra, thi tuyển học sinh không những phải nắm vững kiến thức mà còn đòi hỏi học sinh phải có phản ứng nhanh đối với các dạng toán, đặc biệt các dạng toán mang tính chất khảo sát mà các em thường gặp. Với mong muốn tìm được phương pháp giải các bài toán trắc nghiệm một cách nhanh chóng đồng thời có khả năng trực quan hoá tư duy của học sinh và lôi cuốn được nhiều học sinh tham gia vào quá trình giải bài tập cũng như giúp một số học sinh không yêu thích hoặc không giỏi môn vật lý cảm thấy đơn giản hơn trong việc giải các bài tập trắc nghiệm vật lý, tôi chọn đề tài: 4 “Vận dụng Giản đồ véc tơ trong giải một số dạng toán Điện xoay chiều ” II. MỤC ĐÍCH NGHIÊN CỨU. - Làm quen với công tác nghiên cứu khoa học - Tìm cho mình một phương pháp để tạo ra không khí hứng thú và lôi cuốn nhiều học sinh tham gia giải các bài tập lý, đồng thời giúp các em đạt được kết quả cao trong các kỳ thi đại học và cao đẳng. III, NHIỆM VỤ NGHIÊN CỨU. Trong đề tài này tôi lần lượt giải quyết các nhiệm vụ sau: - Lý thuyết về mạch điện xoay chiều . - Lý thuyết về giản đồ véc tơ. - Vận dụng lý thuyết trên để giải một số bài toán. IV. PHƯƠNG PHÁP NGHIÊN CỨU - Nghiên cứu lý thuyết - Giải các bài tập vận dụng V. PHẠM VI ÁP DỤNG: - Trong giới hạn đề tài tôi chỉ đưa ra phương pháp giải nhanh bài toán khảo sát mạch điện bằng phương pháp giản đồ véc tơ. - Đối tượng áp dụng:Tất cả các học sinh 12 trung học phổ thông. - Số tiết dự kiến 5 tiết. 5 B. NỘI DUNG ÁP DỤNG I. LÝ THUYẾT MẠCH ĐIỆN XOAY CHIỀU: 1. DÒNG ĐIỆN XOAY CHIỀU: * Cách tạo ra dòng điện xoay chiều Khung dây kim loại kín quay đều với vận tốc góc ω quanh trục đối xứng của nó → trong từ trường đều có véc tơ cảm ứng từ B vuông góc với trục quay thì trong mạch có dòng điện biến thiên điều hòa với tần số góc ω gọi là dòng điện xoay chiều. Khi khung dây quay một vòng (một chu kì) dòng điện trong khung dây đổi chiều 2 lần. * Hiệu điện thế xoay chiều, cường độ dòng điện xoay chiều Nếu i = Iocosωt thì u = Uocos(ωt + ϕ). Nếu u = Uocosωt thì i = Iocos(ωt - ϕ) U Với Io = o ; Z = Z R + (Z L - Z C ) 2 2 1 Z L − ZC ωL − ; tgϕ = = ωC . R R * Các giá trị hiệu dụng của dòng điện xoay chiều I= Io 2 ;U= Uo 2 và E = Eo 2 . * Lý do sử dụng các giá trị hiệu dụng của dòng điện xoay chiều + Với dòng điện xoay chiều ta khó xác định các giá trị tức thời của i và u vì chúng biến thiên rất nhanh, cũng không thể lấy giá trị trung bình của chúng vì trong một chu kỳ, giá trị đó bằng 0. + Khi sử dụng dòng điện xoay chiều, ta cần quan tâm tới không phải là tác dụng tức thời của nó ở từng thời điểm mà là tác dụng của nó trong một thời gian dài. + Tác dụng nhiệt của dòng điện tỉ lệ với bình phương của cường độ dòng điện nên không phụ thuộc vào chiều dòng điện. + Ampe kế và vôn kế đo cường độ dòng điện và hiệu điện thế xoay chiều dựa vào tác dụng nhiệt của dòng điện nên gọi là ampe kế nhiệt và vôn kế nhiệt, số chỉ của chúng là cường độ hiệu dụng và hiệu điện thế hiệu dụng của dòng điện xoay chiều. * Các loại đoạn mạch xoay chiều 6 + Đoạn mạch chỉ có điện trở thuần: uR cùng pha với i ; I = + Đoạn mạch chỉ có tụ điện: uC trể pha hơn i góc UC UR R π . 2 1 I = Z ; với ZC = là dung kháng của tụ điện. ωC C + Đoạn mạch chỉ có cuộn dây thuần cảm: uL sớm pha hơn i góc π . 2 UL I = Z ; với ZL = ωL là cảm kháng của cuộn dây. L + Đoạn mạch có R, L, C mắc nối tiếp (không phân nhánh): Độ lệch pha ϕ giữa u và i xác định theo biểu thức: 1 Z L − ZC ωL − tgϕ = = ωC R R Cường độ hiệu dụng xác định theo định luật Ôm: I = U . Z Với Z = R 2 + (Z L - Z C ) 2 là tổng trở của đoạn mạch. + Cộng hưởng trong đoạn mạch RLC Khi ZL = ZC hay ω = = 1 LC thì dòng điện trong mạch đạt giá trị cực đại I max U U2 , công suất trên mạch đạt giá trị cực đại Pmax = , u cùng pha với i (ϕ = 0). R R Khi ZL > ZC thì u nhanh pha hơn i (đoạn mạch có tính cảm kháng). Khi ZL < ZC thì u trể pha hơn i (đoạn mạch có tính dung kháng). R tiêu thụ năng lượng dưới dạng toả nhiệt, ZL và ZC không tiêu thụ năng lượng của nguồn điện xoay chiều. * Cách nhận biết cuộn dây có điện trở thuần r + Xét toàn mạch, nếu: Z ≠ hoặc cosϕ ≠ R 2 + (Z L − Z C ) 2 ; U ≠ R thì cuộn dây có điện trở thuần r ≠ 0. Z 7 U R2 + (U L − U C ) 2 hoặc P ≠ I2R + Xét cuộn dây, nếu: Ud ≠ UL hoặc Zd ≠ ZL hoặc Pd ≠ 0 hoặc cosϕd ≠ 0 hoặc ϕd ≠ π thì cuộn dây có điện trở thuần r ≠ 0. 2 * Công suất của dòng điện xoay chiều + Công suất của dòng điện xoay chiều: P = UIcosϕ = I2R = + Hệ số công suất: cosϕ = U 2R . Z2 R . Z + Ý nghĩa của hệ số công suất cosϕ - Trường hợp cosϕ = 1 tức là ϕ = 0: mạch chỉ có R, hoặc mạch RLC có cộng hưởng điện (ZL = ZC) thì P = Pmax = UI = U2 . R π 2 - Trường hợp cosϕ = 0 tức là ϕ = ± : Mạch chỉ có L, hoặc chỉ có C, hoặc có cả L và C mà không có R thì P = Pmin = 0. - Để nâng cao hệ số công suất của mạch bằng cách mắc thêm vào mạch cuộn cảm hoặc tụ điện thích hợp sao cho cảm kháng và dung kháng của mạch xấp xỉ bằng nhau để cosϕ ≈ 1. - Đối với các động cơ điện, tủ lạnh, … nâng cao hệ số công suất cosϕ để giảm cường độ dòng điện. a) b) Hình 1.1 2. PHƯƠNG PHÁP GIẢN ĐỒ VÉC TƠ. Trong các tài liệu hiện có, các tác giả hay đề cập đến hai phương pháp, phương pháp véc tơ buộc và phương pháp véc tơ trượt. Hai phương pháp đó là kết quả của việc vận dụng hai quy tắc cộng véc tơ trong hình học: quy tắc hình bình hành và quy tắc tam giác. Theo chúng tôi, một trong những vấn đề trọng tâm của việc giải bài toán bằng giản đồ véc tơ là cộng các véc tơ. 8 2.1. Các quy tắc cộng véc tơ   Trong toán học để cộng hai véc tơ a vµ b , sách giáo khoa hình học 10, giới thiệu hai quy tắc: quy tắc tam giác và quy tắc hình bình hành. 2.1.a Quy tắc tam giác Nội dung của quy tắc tam giác là: Từ điểm A tuỳ ý ta vẽ véc tơ AB = a , rồi từ    điểm B ta vẽ véc tơ BC = b . Khi đó véc tơ AC được gọi là tổng của hai véc tơ a vµ b (Xem hình 2.1.a). 2.1.b. Quy tắc hình bình hành Nội dung của quy tắc hình bình hành là: Từ điểm A tuỳ ý ta vẽ hai véc tơ   AB = a vµ AD = b , sau đó dựng điểm C sao cho ABCD là hình bình hành thì véc tơ AC   được gọi là tổng của hai véc tơ a vµ b (xem hình 2.1.b). Ta thấy khi dùng quy tắc hình bình hành các véc tơ đều có chung một gốc A nên gọi là các véc tơ buộc. Vận dụng quy tắc hình bình hành để cộng các véc tơ trong bài toán điện xoay chiều ta có phương pháp véc tơ buộc, còn nếu vận dụng quy tắc tam giác thì ta có phương pháp véc tơ trượt (“các véc tơ nối đuôi nhau”) 2.2. Cơ sở vật lí của phương pháp giản đồ véc tơ Xét mạch điện như hình1.2. a. Đặt vào 2 đầu đoạn AB một hiệu điện thế xoay chiều. Tại một thời điểm bất kì, cường độ dòng điện ở mọi chỗ trên mạch điện là như nhau. Nếu cường độ dòng điện đó có biểu thức là: i = I ocosωt thì biểu thức hiệu điện thế giữa hai điểm AM, MN và NB lần lượt là: π  U AM = U 2 cos ωt +  2  . U MN = U 2 cos( ωt ) π  U NB = U 2 cos ωt −  2  + Do đó hiệu điện thế hai đầu A, B là: u AB = u AM + u MN + u NB . 9 + Các đại lượng biến thiên điều hoà cùng tần số nên chúng có thể biểu diễn bằng các véc tơ Frexnel:     U AB = U L + U R + U C (trong đó độ lớn của các véc tơ biểu thị hiệu điện thế hiệu dụng của nó). + Để thực hiện cộng các véc tơ trên ta phải vận dụng một trong hai quy tắc cộng véc tơ. 2.2.a. Phương pháp véc tơ trượt Vẽ giản đồ véc tơ theo phương pháp véc tơ trượt gồm các bước như sau (Xem hình 1.2. b): + Chọn trục ngang là trục dòng điện, điểm đầu mạch làm gốc (đó là điểm A). + Vẽ lần lượt các véc tơ: AM, MN, NB “nối đuôi nhau” theo nguyên tắc: R - đi ngang, L - đi lên, C - đi xuống. + Nối A với B thì véc tơ AB biểu diễn hiệu điện thế u AB. Tương tự, véc tơ AN biểu diễn hiệu điện thế uAN, véc tơ MB biểu diễn hiệu điện thế uNB. + Nếu cuộn dây không thuần cảm (trên đoạn AM có cả L và r (Xem hình 1.2.a      dưới đây)) thì U AB = U L + U r + U R + U C ta vẽ L trước như sau: L - đi lên, r - đi ngang, R đi ngang và C - đi xuống (xem hình 1.2.b) hoặc vẽ r trước như sau: r - đi ngang, L - đi lên, R - đi ngang và C - đi xuống (Xem hình 1.2.c). + Nếu mạch điện có nhiều phần tử (Xem hình 1.2.d) thì ta cũng vẽ được giản đồ một cách đơn giản như phương pháp đã nêu (Xem hình 1.2.e).   + Góc hợp bởi hai vec tơ a vµ b là góc BAD (nhỏ hơn 1800). Việc giải các bài toán là nhằm xác định độ lớn các cạnh và các góc của các tam giác hoặc tứ giác, nhờ các hệ thức lượng trong tam giác vuông, các hệ thức lượng giác, các định lí hàm số sin, hàm số cos và các công thức toán học. 10 + Trong toán học một tam giác sẽ giải được nếu biết trước 3 (hai cạnh một góc, hai góc một cạnh, ba cạnh) trong số 6 yếu (ba góc trong và ba cạnh). Để làm điều đó ta sử dụng các định lí hàm số sin và định lí hàm số cosin (xem hình bên). b c  a  sin A = sin B = sin C  2 2 2 a = b + c − 2bc. cos A b 2 = c 2 + a 2 − 2ca. cos B  c 2 = a 2 + b 2 − 2ab. cos C giản đồ véctơ tam giác biết trước ba yếu tố (hai cạnh một góc, hai góc một cạnh), sau đó giải tam giác đó để tìm các yếu tố chưa biết, cứ tiếp tục như vậy cho các tam giác còn lại. 11 Độ dài cạnh của tam giác trên giản đồ biểu thị hiệu điện thế hiệu dụng, độ lớn góc biểu thị độ lệch pha. 2.2.b. Phương pháp véc tơ buộc. ( Vẽ giản đồ véc tơ Frexnel) + Chọn trục ngang là trục dòng điện, điểm O làm gốc.    + Vẽ lần lượt các véc tơ: U R , U L U C     π  “cùng chung một gốc O” theo nguyên tắc: U R - trùng với I , U L - sớm hơn I là , U C 2  - trễ hơn I là π . 2   + Cộng hai véc tơ cùng phương ngược chiều U L vµ U C trước sau đó cộng tiếp với  véc tơ U R theo quy tắc hình bình hành (xem hình trên). + Chú ý đến một số hệ thức trong tam giác vuông: a 2 = b 2 + c 2  1 1 1  2 = 2 + 2 b c h 2 h = b'.c' 12 II. BÀI TẬP ÁP DỤNG: 1. BÀI TOÁN HIỆU ĐIỆN THẾ VÀ CƯỜNG ĐỘ DÒNG ĐIỆN HIỆU DỤNG. 1.1. Bài tập có hướng dẫn. Bài 1: Cho mạch điện xoay chiều như hình vẽ. Cuộn dây thuần cảm. Cho biết hiệu điện thế hiệu dụng giữa hai điểm A, B là U AB = 200 (V ) , giữa hai điểm A, M là U AM = 200 2 (V ) và giữa M, B là U MB = 200 (V ) . Tính hiệu điện thế hiệu dụng giữa hai đầu điện trở và hai đầu tụ điện. Giải: Cách 1: Phương pháp véctơ buộc (xem hình 2. 1.a). + Vì U AB = U MB = 200 (V ) nên tam giác OU ABU MB là tam giác cân tại O. Chú ý ( 200 2 + 200 2 = 200 2 ) 2 nên tam giác đó là tam giác vuông cân tại O. + Do đó tam giác OU RU MB ⇒ U R = UC = cũng là tam giác vuông cân tại U R : U MB = 100 2 . 2 Cách 2: Phương pháp véctơ trượt (xem hình2. 1.b). + Dễ thấy 200 2 + 200 2 = ( 200 2 ) nên 2 ∆ABM vuông cân tại B, suy ra α = 45 0 ⇒ β = 45 0 → ∆MNB vuông cân tại N ⇒ U R = UC = MB 2 = 100 2 . 13 ĐS: U R = U C = 100 2 Bài 2: Cho mạch điện như hình vẽ bên. Điện trở R = 80 ( Ω ) , các vôn kế có điện trở rất lớn. Đặt vào hai đầu đoạn mạch một hiệu điện thế u AB = 240 2cos100π t ( V ) thì dòng điện chạy trong mạch có giá trị hiệu dụng I = 3 ( A) . Hiệu điện thế tức thời hai đầu các vôn kế lệch pha nhau π , còn số chỉ của vôn kế V2 là U V 2 = 80 3 (V ) . Xác định L, C, r và 2 số chỉ của vôn kế V1 . Giải Cách 1: Phương pháp véc tơ buộc (xem hình 2.2). Sử dụng định lí hàm số cosin cho tam giác thường: cos ϕ = ( 240 2 + 80 3 ) − (80 3 ) 2 2 2.240.80 3 + U C = U R tgα = 80 (V ) ⇒ Z C = = 3 ⇒ ϕ = 30 0 ⇒ α = 30 0 2 U C 80 ( Ω) = I 3 . U L = U C + 80 3 sin 2ϕ = 200 ( V ) ⇒ Z L = U L 200 ( Ω) = I 3 + Số chỉ của Vôn kế V1: U V 1 = U AN = UR = 160 (V ) . cos α Cách 2: Phương pháp véc tơ trượt. 14 Vẽ giản đồ véc tơ (xem hình 2.3). Gọi các góc như trên hình. Theo bài ra: U R = I .R = 80 3 (V ) . Sử dụng định lí hàm số cosin cho tam giác thường ∆ABN: AB 2 + AM 2 − MB 2 240 2 3 cos ϕ = = = 2. AB. AM 2 2.240.80 3 ∧ ⇒ ϕ = 30 0 ⇒ β = 90 0 − A B M = 60 0 ⇒ α = 60 0 − ϕ = 30 0 U C = MN = AMtg 30 0 = 80 (V ) ,  + Xét ∆AMN:  . AM = 160 (V ) U V 1 = AN = 0 cos 30  U L 200 2  Z L = I = 3 ( Ω ) = 100πL ⇒ L = 3π ( H )  ⇒ −3 Z = U C = 80 ( Ω ) = 1 ⇒ C = 3.10 ( F )  C I 100πC 8π 3 + Xét ∆ABG: U L = U C + GB = U C + AB. sin ϕ = 200 ( V ) . ⇒r= U r AG − AM AB. cos ϕ − AM = = = 40 ( Ω ) . I I I ĐS: L = 2 3π ( H ), C = 3.10 −3 ( F ) , r = 40 ( Ω ) , số chỉ vôn kế V1 là 80 (V ) . 8π Bài 3: Cho mạch điện như hình vẽ bên. Giá trị L= của các phần tử trong mạch 1 ( H ) , C = 50 ( F ) , R = 2r . Hiệu điện thế giữa hai đầu đoạn mạch u = U 0co s100π t ( V ) . π π Hiệu điện thế hiệu dụng giữa hai điểm A, N là U AN = 200 (V ) và hiệu điện thế tức thời giữa hai điểm MN lệch pha so với hiệu điện thế tức thời giữa hai điểm AB là định các giá trị U 0 , R, r . Viết biểu thức dòng điện trong mạch. Giải: 15 π . Xác 2 Cách 1: Phương pháp véc tơ trượt. + Vẽ giản đồ véc tơ (xem hình 2.4). + M l Aà trực tâm của ∆ABN . + Vì Z C = 2 Z L  ⇒ U C = 2U L . Do đó, AO là đường trung tuyến của ⇒ NO = OB  R = 2r ⇒ U R = 2U r ⇒ MO = ∆ABN . Vì 1 AO . Suy ra, M là trọng tâm của ∆ABN . 3 + Vậy, M vừa là trọng tâm vừa là trực tâm của ∆ABN , do đó ∆ABN đều, tức là: AB = AN = NB = 200 (V ) . + Tính được: U 0 = U AB 2 = AB 2 = 200 2 (V ) U NB 200 C + Cường độ hiệu dụng: I = Z = Z = 200 = 1 ( A) C C + Từ giản đồ tính được: 2 2 200 AO = .200 sin 60 0 = (V ) 3 3 3 U 200 R 100 ⇒R= R = (Ω), r = = (Ω ) I 2 3 3 UR = + Từ giản đồ nhận thấy, i AB sớm pha hơn u AB là π . 6 π  + Vậy, biểu thức dòng điện: i = 2cos 100π t + ÷( A ) .  6 Cách 2: Phương pháp véc tơ buộc (xem hình 2.5.). + Tương tự như cách 2, ta thấy tam giác OFE là tam giác đều vì G vừa là trọng tâm vừa là trực tâm, suy ra: U AB = U C = U AN = 200 (V ) , ϕ = 30 0 . + Tính được: U 0 = U AB 2 = 200 2 (V ) 16 U 200 C + Cường độ hiệu dụng: I = Z = 200 = 1 ( A) C 2 2 2 200 0 (V ) + U R = 3 OH = 3 U AB cos ϕ = 3 .200 cos 30 = 3 ⇒R= U R 200 100 π = (Ω), r = (Ω) . Từ giản đồ nhận thấy, i AB sớm pha hơn u AB là . I 6 3 3 π  Vậy, biểu thức dòng điện: i = 2cos 100π t + ÷( A ) .  6 Bài 4: Cho mạch điện như hình vẽ bên. Điện trở thuần R = 120 3 ( Ω ) , cuộn dây có điện trở thuần r = 30 3 ( Ω ) . Hiệu điện thế hai đầu đoạn mạch có biểu thức: u AB = U 0 cos100π t ( V ) , hiệu điện thế hiệu dụng giữa hai điểm A, N là U AN = 300 (V ) , và giữa hai điểm M, B là U MB = 60 3 (V ) . Hiệu điện thế tức thời u AN lệch pha so với u MB là π . Xác 2 định U0, độ tự cảm của cuộn dây L và điện dung của tụ điện C. Viết biểu thức dòng điện trong mạch. Giải Cách 1: Phương pháp véc tơ trượt (hình 2.6.). 1 4 + Kẻ ME // AN ⇒ ME = AN = 60 (V ) + U R = 4U r ⇒ MO = + tgα = Vì R = 4r nên 1 AO 5 Xét ∆MBE : ME 1 = ⇒ α = 30 0 . MB 3 17 + Xét ∆MOB : OB = MB cos α = 90(V ) U L = ON = AN sin α = 150 (V ) + Xét ∆AOB :  OA = AN cos α = 150 3 (V ) ⇒ Ur = U OA = 30 3 (V ) ⇒ I = r = 1( A) 5 r U L = 150 (V ) ⇒ Z L = UL 1,5 = 150 (Ω) = 100πL ⇒ L = (H ) I π U C = OB + U L = 240 (V ) ⇒ Z C = 240 (Ω) ⇒ C = 10 −3 (F ) 24π + U 0 = U AB 2 = 2 AO 2 + OB 2 = 60 42 (V ) + Độ lệch pha uAB so với dòng điện: tgϕ AB = Z L − ZC 3 =− ⇒ ϕ AB ≈ −0,106π R+r 5 + Biểu thức dòng điện: i = 2cos ( 100π t + 0,106π ) ( A ) Cách 2: Phương pháp véc tơ buộc (hình 2.7). + Xét tam giác vuông phía trên (chú ý U R = 4U r ): cos α = + Xét tam giác vuông phía dưới: sin α = + Suy ra: tgα = 1 3 Ur 60 3 ⇒ α = 30 0 + Từ đó tính ra: U r = 60 3. sin α = 30 3 (V ) ⇒ I = U L = 300. sin α = 150 (V ) ⇒ Z L = Ur = 1 ( A) r UL = 150 ( Ω ) I U C = U L + 60 3. cos α = 240 (V ) ⇒ Z C = 240 ( Ω ) . + U 0 = U AB 2 = I .Z AB 2 = 60 42 (V ) . + Độ lệch pha uAB so với dòng điện: 18 U R + U r 5U r U r = = 300 300 60 tgϕ AB = Z L − ZC 3 =− ⇒ ϕ AB ≈ −0,106π R+r 5 + Biểu thức dòng điện: i = 2cos ( 100π t + 0,106π ) ( A ) 1.2. Bài tập tự giải L, A C R M B Bài 1: Đặt điện áp u = 220 2 cos100πt (V) vào hai đầu đoạn mạch AB gồm hai đoạn mạch AM và MB mắc nối tiếp. Đoạn AM gồm cuộn cảm thuần L mắc nối tiếp với điện trở thuần R, đoạn MB chỉ có tụ điện C. Biết điện áp giữa hai đầu đoạn mạch AM và điện áp giữa hai đầu đoạn mạch MB có giá trị hiệu dụng bằng nhau nhưng lệch pha nhau 2π/3. Điện áp hiệu dụng giữa hai đầu đoạn mạch AM bằng A. 220 2 V. B. 220/ 3 V. C. 220 V. D. 110 V. Bài 2: Đoạn mạch điện xoay chiều gồm điện trở thuần 30 (Ω) mắc nối tiếp với cuộn dây. Điện áp hiệu dụng ở hai đầu cuộn dây là 120 V. Dòng điện trong mạch lệch pha π/6 so với điện áp hai đầu đoạn mạch và lệch pha π/3 so với điện áp hai đầu cuộn dây. Cường độ hiệu dụng dòng qua mạch bằng A.3 (A) B. 3(A) C. 4(A) D. (A) Bài 3: Trên đoạn mạch xoay chiều không phân nhánh có bốn điểm theo đúng thứ tự A, M, N và B. Giữa hai điểm A và M chỉ có điện trở thuần, giữa hai điểm M và N chỉ có tụ điện, giữa hai điểm N và B chỉ có cuộn cảm. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều 240V – 50 Hz thì uMB và uAM lệch pha nhau π/3, uAB và uMB lệch pha nhau π/6. Điện áp hiệu dụng trên R là A. 80 (V). B. 60 (V). C. 80√3 (V). D. 60√3 (V). Bài 4: Đoạn mạch xoay chiều AB chứa 3 linh kiện R, L, C. Đoạn AM chứa L, Z L = 50 3 ZC = MN chứa R và NB chứa C. R = 50Ω , Ω, uMB = 60V . u AB có giá trị cực đại là: A. 150V. B. 100V. C. 50 7 V. D. 100 3 V. 50 3 3 Ω. Khi u AN = 80 3 V thì Bài 5: Đặt điện áp xoay chiều có giá trị hiệu dụng không đổi 150 V vào đoạn mạch AMB gồm đoạn AM chỉ chứa điện trở R, đoạn mạch MB chứa tụ điện có điện dung C mắc nối tiếp với một cuộn cảm thuần có độ tự cảm L thay đổi được. Biết sau khi thay đổi độ tự cảm L thì điện áp hiệu dụng hai đầu mạch MB tăng 2 2 lần và dòng π điện trong mạch trước và sau khi thay đổi lệch pha nhau một góc 2 . Giá trị điện áp hiệu dụng A. 100 V. hai đầu B. 100 2 V. mạch AM khi chưa thay C. 100 3 V. D. 120 V. 19 đổi L? Bài 6: Đoạn mạch điện xoay chiều như hình vẽ. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều uAB = U 2 cos(100 πt ) V. Biết R = 80 Ω , cuộn dây có r = 20 Ω , UAN = 300V , UMB = 60 3 V và uAN lệch pha với uMB một góc 900 . Điện áp hiệu dụng hai đầu mạch có giá trị : A. 200V B. 125V C. 275V A L, r R C B N M D. 180V 2.BÀI TOÁN HỘP ĐEN. 2.1 Bài toán trong mạch điện có chứa một hộp kín. BÀI 1: Cho mạch điện như hình vẽ C UAB = 120(V); ZC = 10 3 (Ω) A R = 10(Ω); uAN = 60 6 cos100π t (v ) R M X N B UAB = 60(v) a. Viết biểu thức uAB(t) b. Xác định X. Biết X là đoạn mạch gồm hai trong ba phần tử (R o, Lo (thuần), Co) mắc nối tiếp Giải: a. Vẽ giản đồ véc tơ cho đoạn mạch đã biết A Phần còn lại chưa biết hộp kín chứa gì vì vậy ta giả sử nó là một véc tơ bất kỳ tiến theo chiều dòng điện sao cho: NB = 60V, AB = 120V, AN = 60 3V i A + Xét tham giác ANB, ta nhận thấy AB2 = AN2 + NB2, vậy đó là tam U giác vuông tại N U NB 60 1 = = tgα = AN 60 3 3 ⇒ α= U A AB B N C U π π M ⇒ UAB sớm pha so với UAN 1 góc 6 6 20 U R N N U B U D R 0 l0 π   → Biểu thức uAB(t): uAB= 120 2 cos 100π t + 6 ÷ (V)   b. Xác định X Từ giản đồ ta nhận thấy NB chéo lên mà trong X chỉ chứa 2 trong 3 phần tử nên X phải chứa Ro và Lo. Do đó ta vẽ thêm được U R vµ U L như hình vẽ. 0 + Xét tam giác vuông AMN: tgβ = 0 UR R 1 π = = ⇒β= UC ZC 6 3 + Xét tam giác vuông NDB U R = U NB cos β = 60. O 3 = 30 3 (V) 2 1 U L = U NB sin β = 60. = 30(V) 2 O Mặt khác: UR = UANsinβ = 60 3. 1 = 30 3 ( v ) 2 30 3 = 3 3 (A) 10 UR  30 3 = = 10(Ω) R O = I  3 3 ⇒ Z = U L = 30 = 10 (Ω) ⇒ L = 10 = 0,1 (H) O  L I 3 3 3 100 π 3 3π ⇒I= O O O BÀI 2: Cho mạch điện như hình vẽ: π  UAB = cost; uAN = 180 2 cos  100π t − ÷(V ) 2  C A R M N X ZC = 90(Ω); R = 90(Ω); uAB = 60 2 cos100π t (V ) a. Viết biểu thức uAB(t) b. Xác định X. Biết X là đoạn mạch gồm hai trong ba phần tử (R O, Lo (thuần), CO) mắc nối tiếp. Giải a. Viết biểu thức uAB(t). 21 B Vẽ giản đồ véc tơ cho đoạn mạch đã biết AN. Phần còn lại chưa biết hộp kín chứa gì, vì vậy ta giả sử nó là một véc tơ bất kỳ tiến theo chiều dòng điện sao cho uNB sớm pha π so với uAN 2 i A + Xét tam giác vuông ANB U NB U NB 60 1 = = = * tgα = AN U AN 180 3 U U A AB B N C U ⇒ α ≈ 80 = 0,1π(rad) 0 M ⇒ uAB sớm pha so với uAN một góc 0,1π U R N N U B U D R 0 2 2 2 * U AB = U AN + U NB = 1802 + 602 ≈ 1900 ⇒ UAb = 190(V) π   → biểu thức uAB(t): uAB = 190 2 cos  100π t − 2 + 0,1π ÷   = 190 2 cos ( 100π t − 0, 4π ) (V ) b. Xác định X. Từ giản đồ ta nhận thấy NB chéo lên mà trong X chỉ chứa hai trong 3 phần tử trên X phải chứa RO và LO. Do đó ta vẽ thêm được U R vµ U L như hình vẽ. O + Xét tam giác vuông AMN: tgβ = O UR R 90 = = =1 U C Z C 90 ⇒ β = 450 ⇒ UC = UAN.cosβ = 180. U 2 90 2 = 90 2 ⇒ I = C = = 2 (A) 2 ZC 90 + Xét tam giác vuông NDB U R = U NB cos β = 60. O 2 30 2 = 30 2 (V) ⇒ R 0 = = 30(Ω) 2 2 β = 450 ⇒ ULo = URo= 30 2 (V) → ZLo = 30(Ω) ⇒ LO = 30 0,3 = (H) 100π π 2.2. Bài toán trong mạch điện có chứa hai hộp kín 22 c0 BÀI 1: Một mạch điện xoay chiều có sơ đồ như hình vẽ. Trong hộp X và Y chỉ có một linh kiện hoặc điện trở, hoặc cuộn cảm, hoặc là A a X Y M B tụ điện. Ampe kế nhiệt (a) chỉ 1A; U AM = UMB = 10V UAB = 10 3V . Công suất tiêu thụ của đoạn mạch AB là P = 5 6 W. Hãy xác định linh kiện trong X và Y và độ lớn của các đại lượng đặc trưng cho các linh kiện đó. Cho biết tần số dòng điện xoay chiều là f = 50Hz. . Giải: ⇒ cos ϕ = B P UI UA π * Trường hợp 1: uAB sớm pha so với i 4 ⇒ giản đồ véc tơ 45 A 0 15 U M 0 U U 0 R X U K R Y L X Y i H U AM = U MB Vì:  U AB = 3U AM ⇒ ∆AMB là ∆ cân và UAB = 2UAMcosα ⇒ cosα = ⇒ cosα = 30 B L Y 5 6 2 π = ⇒ϕ=± 2 4 1.10 3 U U Hệ số công suất: cos ϕ = U AB 10 3 = 2U AM 2.10 3 ⇒ α = 30 0 2 a. uAB sớm pha hơn uAM một góc 300 ⇒ UAM sớm pha hơn so với i 1 góc ϕX = 450 - 300 = 150 ⇒ X phải là 1 cuộn cảm có tổng trở ZX gồm điện trở thuận RX và độ tự cảm LX Ta có: Z X = U AM 10 = = 10(Ω) I 1 Xét tam giác AHM: 0 0 + U R = U X cos 15 ⇒ R X = Z X cos 15 X ⇒ RX = 10.cos150 = 9,66(Ω) 23 0 0 0 + U L = U X sin 15 ⇒ Z L = Z X sin 15 = 10 sin 15 = 2,59(Ω) X U K 2,59 ⇒ LX = = 8,24(mH ) 100π U M H U X U X L U ⇒ UMB sớm pha so với i một góc ϕY = 900 - 150 = 750 30 ⇒ Y là một cuộn cảm có điện trở RY và độ tự cảm LY 45 A R B Y Y X Xét tam giác vuông MKB: MBK = 150 (vì đối xứng) R L U U X 0 Y AB i 0 + RY = Z L (vì UAM = UMB) ⇒ RY = 2,59(Ω) X + Z L = R X = 9,66(Ω) ⇒ LY = 30,7m(H) Y b. uAB trễ pha hơn uAM một góc 300 U AM 10 = = 10(Ω) I 1 Tương tự ta có:+ X là cuộn cảm có tổng trở ZX = Cuộn cảm X có điện trở thuần RX và độ tự cảm LX với RX = 2,59(Ω); RY=9,66(Ω) * Trường hợp 2: uAB trễ pha π so với 4 i A 450 i, khi đó uAM và uMB cũng trễ pha hơn i (góc M 300 150 và 750). Như vậy mỗi hộp phải chứa tụ điện có tổng trở ZX, ZX gồm điện trở thuần M ’ RX, RY và dung kháng CX, CY. Trường hợp B này không thể thoả mãn vì tụ điện không có điện trở BÀI 2: Cho hai hộp kín X, Y chỉ chứa 2 trong ba phần tử: R, L (thuần), C mắc nối tiếp. Khi mắc hai điểm A, M vào hai cực của một A a X v1 M Y B v2 nguồn điện một chiều thì Ia = 2(A), UV1 = 60(V). Khi mắc hai điểm A, B vào hai cực của một nguồn điện xoay chiều tần số 50Hz thì Ia = 1(A), Uv1 = 60v; UV2 = 80V,UAM lệch pha so với U MB một góc 1200, xác định X, Y và các giá trị của chúng. 24 Giải * Vì X cho dòng điện một chiều đi qua nên X không chứa tụ điện. Theo đề bài thì X chứa 2 trong ba phần tử nên X phải chứa điện trở thuần (R X) và cuộn dây thuần cảm (LX). Cuộn dây thuần cảm không có tác dụng với dòng điện một chiều nên: = UV 1 I = RX 60 = 30(Ω) 2 * Khi mắc A, B vào nguồn điện xoay chiều : ZAM = UV 1 I 60 = 60(Ω) = R 2X + Z 2L 1 = X ⇒ Z L = 60 2 − 30 2 = 3.30 2 ⇒ Z L = 30 3 (Ω) X X ZL tgϕAM= X RX = 3 ⇒ ϕ AM = 60 0 * Vẽ giản đồ véc tơ cho đoạn AM. Đoạn mạch MB tuy chưa biết nhưng chắc M chắn trên giản đồ nó là một véctơ tiến theo U chiều dòng điện, có độ dài = U V = 80V và 2 U 30 AM U 60 A Y I = U 40 = 40(Ω) 1 25 D 0 30 lx 0 U 30 rx U + Xét tam giác vuông MDB 1 U R = U MB sin 30 0 = 80. = 40(V) 2 Y 0 ry 0 MB dòng điện, do đó Y phải chứa điện trở thuần U 120 U phải chéo xuống thì mới tiến theo chiều UR U M Từ giản đồ véc tơ ta thấy MB buộc ⇒ RY = i rx được giản đồ véc tơ cho toàn mạch. (RY) và tụ điện CY. lx AM A uuu hợp với véc tơ AB một góc 1200 ⇒ ta vẽ U AM AB cy i 0 B U L = U MB cos 30 0 = 80. Y ⇒ LY = 3 = 40 3 (V) ⇒ Z L = 40 3 (Ω) 2 Y 40 3 0,4 3 = (H) 100 π π 2.3. Bài toán này trong mạch điện có chứa ba hộp kín BÀI 1: Cho mạch điện chứa ba linh a A X M * N * Y Z kiện ghép nối tiếp: R, L (thuần) và C. Mỗi linh kiện chứa trong một hộp kín X, Y, Z Đặt vào hai đầu B A, B của mạch điện một hiệu điện thế xoay chiều u = 8 2 cos 2π ft (V ) Khi f = 50Hz, dùng một vôn kế đo lần lượt được UAM = UMN = 5V UNB = 4V; UMB = 3V. Dùng oát kế đo công suất mạch được P = 1,6W Khi f ≠ 50Hz thì số chỉ của ampe kế giảm. Biết RA ≈ O; RV ≈ ∞ a. Mỗi hộp kín X, Y, Z chứa linh kiện gì ? b. Tìm giá trị của các linh kiện. N Giải Theo đầu bài: U AB = 8 2 = 8(V) 2 U Khi f = 50Hz M U N M N UAM = UMN = 5V; UNB = 4V; UMB = 3V A U A M M U M B B Nhận thấy: + UAB = UAM + UMB (8 = 5 + 3) ⇒ ba điểm A, M và B thẳng hàng 2 2 2 + U MN = U NB + U MB (52 = 42 + 32) ⇒ Ba điểm M, N, B tạo thành tam giác vuông tại B. ⇒ Giản đồ véc tơ của đoạn mạch có dạng như hình vẽ. Trong đoạn mạch điện không phân nhánh RLC ta có U C ⊥ U R vµ U C muộn pha hơn U R ⇒ U AM biểu diễn 26 M N hiệu điện thế hai đầu điện trở R (X chứa R) và U NB biểu diễn hiệu điện thế hai đầu tụ điện (Z chứa C). Mặt khác U MN sớm pha so với U AM một góc ϕMN < π chứng 2 tỏ cuộn cảm L có điện trở thuần r, U MB biểu diễn U r và Y chứa cuộn cảm có độ tự cảm L và điện trở thuần r. b. f ≠ 50Hz thì số chỉ của (a) giảm khi f = 50Hz thì trong mạch có cộng hưởng điện.  cos ϕ = 1   ⇒ Z = Z L C   +R = cos ϕ = 1 ⇒ P = I.U AB → I = ⇒I= P U AB 1,6 = 0,2(A ) 8 UA 5 = = 25(Ω) I 0,2 20 0,2  L= = (H)  U NB 3  100 π π ⇒ + Z L = Z C = I = 0,2 = 15(Ω) ⇒  1 10 −3 C = =  20.100 π 2π  U U 3 + r = r = MB = = 15(Ω) I I 0,2 (F) 2.4. Bài tập tự giải. Câu 1: Cho đoạn mạch gồm hai phần tử X, Y mắc nối tiếp. Trong đó X, Y có thể là R, L hoặc C. Cho biết hiệu điện thế giữa hai đầu đoạn mạch là u = 200 2 cos100 π t(V) và i = 2 2 cos(100 π t - π /6)(A). Cho biết X, Y là những phần tử nào và tính giá trị của các phần tử đó? µ F. A. R = 50 Ω và L = 1/ π H. B. R = 50 Ω và C = 100/ π C. R = 50 3 Ω và L = 1/2 π H. D. R = 50 3 Ω và L = 1/ π H. Câu 2: Cuộn dây thuần cảm có hệ số tự cảm L = 636mH mắc nối tiếp với đoạn mạch X, đoạn mạch X chứa 2 trong 3 phần tử R 0, L0 , C0 mắc nối tiếp. Đặt vào hai đầu đoạn mạch hiệu điện thế u = 120 2 cos100 π t(V) thì cường độ dòng điện qua cuộn dâylà i = 0,6 2 cos(100 π t - π /6)(A). Xác định 2 trong 3 phần tử đó? 27 A. R0 = 173 Ω và L0 = 31,8mH. B. R0 = 173 Ω và C0 = C. R0 = 17,3 Ω và C0 = 31,8mF. D. R0 = 173 Ω và C0 = 31,8 µ 31,8mF. F. Câu 3: Cho một đoạn mạch xoay chiều gồm hai phần tử mắc nối tiếp. Điện áp giữa hai đầu mạch và cường độ dòng điện qua mạch có biểu thức: u = 200cos(100πtπ/2)(V), i = 5cos(100πt -π/3)(A). Chọn Đáp án đúng? A. Đoạn mạch có 2 phần tử RL, tổng trở 40 Ω. B. Đoạn mạch có 2 phần tử LC, tổng trở 40 Ω. C. Đoạn mạch có 2 phần tử RC, tổng trở 40 Ω. D. Đoạn mạch có 2 phần tử RL, tổng trở 20 2 Ω. Câu 4: Cho một hộp đen X trong đó có chứa 2 trong 3 phần tử R, L, hoặc C mắc nối tếp. Mắc hộp đen nối tiếp với một cuộn dây thuần cảm có L 0 = 318mH. Đặt vào hai đầu đoạn mạch điện một hiệu điện thế xoay chiều có biểu thức u = 200 2 .cos(100 π t- π /3)(V) thì dòng điện chạy trong mạch có biểu thức i = 4 2 .cos(100 π t - π /3)(A). Xác định phần tử trong hộp X và tính giá trị của các phần tử? A. R=50 Ω ; C = 31,8 µ F. B. R = 100 Ω ; L = 31,8mH. µ C. R = 50 Ω ; L = 3,18 H. D. R =50 Ω ; C = 318 µ F. Câu 5: Một đoạn mạch xoay chiều gồm 2 trong 3 phần tử R, L hoặc C mắc nối tiếp . Biểu thức hiệu điện thế 2 đầu mạch và cường độ dòng điện qua mạch là π π  u = 80 cos 100π t + ÷(V ) và i = 8cos(100π t + )( A) . Các phần tử trong mạch và tổng trở 2 4  của mạch là A. R và L , Z = 10 Ω . B. R và L , Z = 15 Ω . C. R và C , Z =10 Ω . D. L và C , Z= 20 Ω . Câu 6: Mạch điện nối tiếp R, L, C trong đó cuộn dây thuần cảm (ZL < ZC). Đặt vào hai đầu đoạn mạch một điện áp xoay chiều 200 2 cos(100πt+ π/4)(V). Khi R = 50 Ω công suất mạch đạt giá trị cực đại. Biểu thức dòng điện qua mạch lúc đó: A. i = 4cos(100πt+ π/2) (A) B. i = 4cos(100πt+π/4) (A) C. i = 4 2 cos(100πt +π/4)(A) D. i =4 2 cos(100πt) (A) Gợi ý: Khi R = 50 Ω công suất mạch đạt giá trị cực đại. suy ra R=/ZL-ZC/ = 50Ω . Mặt khác ZC > ZL nên trong số phức ta có: ZL + ZC = -50i. Suy ra: i= u 200 2∠(π : 4) π = = 4∠ Chọn A 50 − 50i 2 Z Câu 7: Một đoạn mạch xoay chiều có hai trong ba phần tử R,C hoặc cuộn dây thuần cảm. Điện áp hai đầu mạch và cường độ dòng điện qua mạch có biểu thức: u = 100 cos 100πt (V) ; i = 2cos (100πt- 0,25π) (A). Điện trở hoặc trở kháng tương ứng là : 28 A.L,C ; ZC = 100Ω; ZL= 50Ω B.R,L ; R = 40Ω; ZL= 30Ω C.R,L ; R = 50Ω; ZL= 50Ω D.R,C ; R = 50Ω; ZC= 50Ω. Câu 8: Cho đoạn mạch như hình vẽ, biết u = 100 2 cos(100πt )V , C = 10 −4 F . Hộp π kín X chỉ chứa một phần tử (R hoặc cuộn dây thuần cảm), dòng điện trong mạch sớm pha π/3 so với điện áp giữa hai đầu đoạn mạch AB. Hộp X chứa gì ? điện trở hoặc cảm B A C X • • kháng có giá trị bao nhiêu? A. Chứa R; R = 100/ 3 Ω B. Chứa L; ZL = 100/ 3 Ω C. Chứa R; R = 100 3 Ω D. Chứa L; ZL = 100 3 Ω Câu 9: Cho đoạn mạch AB gồm biến trở nối tiếp với hộp kín X. Hộp X chỉ chứa cuộn thuần cảm L hoặc tụ C .UAB = 200 (V) không đổi ; f = 50 Hz .Khi biến trở có giá trị sao cho PAB cực đại thì I = 2(A) và sớm pha hơn uAB. Khẳng định nào là đúng ? A. X chứa C = 10−4 F 2π B. X chứa L= 10−4 C. X chứa C = F π 1 H π D. X chứa L = 1 H 2.π Câu 10: Ở (hình vẽ) hộp X chứa một trong ba phần tử: điện • X C M A trở thuần, cuộn dây, Hình vẽ tụ điện. Khi đặt vào hai đầu AB một điện áp xoay chiều có giá trị hiệu dụng 220V, người ta đo được UAM = 120V và UMB = 260V. Hộp X chứa: A.cuộn dây thuần cảm. B.cuộn dây không thuần cảm. C. điện trở thuần. D. tụ điện. Câu 11: Đặt vào hài đầu đoạn mạch AB một điện áp u = C A X 100 2 cos(100 π t)(V), -4 π tụ điện có C = 10 / (F). Hộp X chỉ chứa một phần tử (điện trở hoặc cuộn dây thuần cảm) i sớm pha hơn uAB một góc π /3. Hộp X chứa điện trở hay cuộn dây? Giá trị điện trở hoặc độ tự cảm tương ứng là bao nhiêu? A. Hộp X chứa điện trở: R = 100 3 Ω . B. Hộp X chứa điện trở: R = 100/ 3 Ω . C.Hộp X chứa cuộn dây: L = 3 / π (H). D. Hộp X chứa cuộn dây: L = 3 /2 π (H). ∅ 3.BÀI TOÁN KHẢO SÁT ĐIỆN ÁP THEO L VÀ C: 3.1. Biện luận điện áp theo L: 29 ∅ B B - Vẽ giản đồ véc tơ, lấy trục dòng điện làm gốc, các véc tơ chỉ các giá trị hiệu dụng. u u u u u u U u Ta có: U = U R + U L + U C = U RC + U L - áp dụng định lí hàm sin trong tam giác ABO. O U AB UL U OA OB = = RC (1 ) ⇔ = = sin β sin β sin B sin A sin B sin A U sin B U  I u UL u UC + Tìm UL max: (1 ) ⇒ U L = sin β A B u U RC R R Ta có: U = const, sinB = U = 2 2 = const. Vậy R + ZC RC π 2 UL max khi sin β đạt giá trị max ⇒ sin β = 1( β = ) ⇒ U L ( max) = U R 2 + ZC2 R (1) + Tìm L: (1 ) U L = sin β U U L = RC ZC U RC . Vì tam giác ABO vuông ở O nên sinA = CosB = sin A R 2 + Z C2 R + Z ⇔ ZL = ⇒ ZC R 2 + ZC2 = C ( R 2 + ZC2 ) 1 ω ωC u u U RL A UL u 3.2. Biện luận điện áp theo C: u U C - Vẽ giản đồ véc tơ, lấy trục dòng điện làm gốc, các U R Ou véc tơ chỉ các giá trị hiệu dụng. u u u u u u Ta có: U = U + U + U = U + U U B 2 2 C R L C C L= RL - áp dụng định lí hàm sin trong tam giác ABO. UC AB U U = = RL (2 ) ⇔ = sin β sin β sin A sin B + Tìm UC max: (2 ) ⇒ U C = sin β U sin A 30 (2) ZC R 2 + Z C2 ⇒ U R R Ta có: U = const, sinA= U = 2 2 = const. Vậy R + ZL RL π 2 UC max khi sin β đạt giá trị max ⇒ sin β = 1( β = ) ⇒ + Tìm C: (1 ) U C = sin β ZL R 2 + Z L2 ⇒ UC = U RL ZL U C (max) = U R 2 + Z L2 R (3) U RL . Vì tam giác ABO vuông ở O nên sinB = CosA = sin B R 2 + Z L2 ⇔ ZC = R 2 + Z L2 ⇒ ZL 1 R 2 + Z L2 L = ⇒C = 2 ωC ωL R + Z L2 (4) Bài 1: Cho mạch điện RLC mắc nối tiếp, với L thay đổi được. Hiệu điện thế ở hai −4 10 ( F ) . Hãy tính L để: đầu mạch là u = 120 2 cos(100π t ) (V), R = 30Ω , C = π . là cực đại và tính Bài giải 3.3. Bài tập tự giải. Bài 1: Một đoạn mạch RLC không phân nhánh gồm điện trở thuần 100 Ω , cuộn dây cảm thuần có độ tự cảm 1 H và tụ điện có điện dung C thay đổi được. Đặt vào hai π đầu đoạn mạch một điện áp u = 200 2 cos100π t (V ) . Thay đổi điện dung C của tụ điện cho đến khi điện áp hiệu dụng giữa hai đầu tụ điện đạt giá trị cực đại. Giá trị cực đại đó bằng: A. 100 2V B. 200 2 V C. 50 2V D. 100V Bài 2: Cho đoạn mạch điện không phân nhánh RLC. Điện áp giữa hai đầu đoạn mạch có biểu thức u = 200cos100π t (V). Điện trở R = 100Ω, Cuộn dây thuần cảm có L 10−4 C L thay đổi được, tụ điện có điện dung C = (F). Xác định M A L saoRcho điện áp B π hiệu dụng giữa hai đầu cuộn dây đạt giá trị cực đại. V 31 A. L= 0,1 H π 1 H π B. L= 2 H π C. L= 0,5 H π D. L= Bài 3 : Mạch điện xoay chiều nối tiếp gồm cuộn dây có độ tự cảm L, điện trở r và tụ điện C. Đặt vào hai đầu đoạn mạch một hiệu điện thế xoay chiều có giá trị hiệu dụng 30V. Điều chỉnh C để điện áp trên hai bản tụ đạt giá trị cực đại và bằng số 50V. Điện áp hiệu dụng giữa hai đầu cuộn dây khi đó là bao nhiêu? A. 30V B. 20V C. 40V D. 50V Bài 4: Đặt điện áp xoay chiều có f thay đổi vào hai đầu đoạn mạch điện xoay chiều RLC mắc theo thứ tự đó có R=50Ω, L = 1 10 −2 H;C = F . Để điện áp hiệu dụng 2 đầu LC 6π 24π (ULC) đạt giá trị cực tiểu thì tần số dòng điện phải bằng: A. 60 Hz B. 50 Hz C. 55 Hz D. 40 Hz Bài 5 (ĐH-2010): Một đoạn mạch AB gồm hai đoạn mạch AM và MB mắc nối tiếp. Đoạn mạch AM có điện trở thuần 50 Ω mắc nối tiếp với cuộn cảm thuần có độ tự cảm 1 ( H ) đoạn mạch MB chỉ có tụ điện với điện dung thay đổi được. Đặt điện áp π u = U 0 cos100πt (V) vào hai đầu đoạn mạch AB. Điều chỉnh điện dung của tụ điện đến giá trị C1 sao cho điện áp hai đầu đoạn mạch AB lệch pha π/2 so với điện áp hai đầu đoạn mạch AM. Giá trị của C1 bằng A. 8.10 −5 F π 2.10 −5 (F) π B. 10 −5 (F) π C. 4.10 −5 (F). π D. Bài 6 (ĐH-2011): Đặt điện áp xoay chiều u = U 2 cos100πt (U không đổi, t tính bằng s) vào hai đầu đoạn mạch mắc nối tiếp gồm điện trở thuần R, cuộn cảm thuần có độ tự cảm 1 H và tụ điện có điện dung C thay đổi được. Điều chỉnh điện dung của tụ điện 5π để điện áp hiệu dụng giữa hai bản tụ điện đạt giá trị cực đại. Giá trị cực đại đó bằng U 3 . Điện trở R bằng A. 20 2 Ω . B. 10 2 Ω . C. 10 Ω . D. 20 Ω . 32 C. KẾT LUẬN Như trên đã nói, bài tập vật lý là một phần không thể thiếu trong quá trình giảng dạy bộ môn vật lý ở trường phổ thông. Nó là phương tiện để nghiên cứu tài liệu mới, để ôn tập, để rèn luyện kỹ năng, kỹ xảo vận dụng kiến thức và bồi dưỡng phương pháp nghiên cứu khoa học. Bài tập vật lý là phương tiện để giúp học sinh rèn luyện những đức tính tốt đẹp như tính cảm nhận, tinh thần chịu khó và đặc biết giúp các em có được thế giới quan khoa học và chủ nghĩa duy vật biện chứng. Để bài tập vật lý thực hiện đúng mục đích của nó thì điều cơ bản là người giáo viên phải phân loại và có được phương pháp tốt nhất để học sinh dễ hiểu và phù hợp với trình độ của từng học sinh. Trong đề tài này tôi chỉ mới tìm cho mình một phương pháp và chỉ áp dụng cho ba dạng bài tập, tất nhiên là không trọn vẹn, để giúp học sinh giải được những bài toán mang tính lối mòn nhằm mục đích giúp các em có được kết quả tốt trong các kỳ thi, đặc biệt là thi dưới hình thức trắc nghiệm khách quan. Tuy nhiên đây mới là phương pháp mang tính chủ quan của cá nhân tôi, và thật ra tôi đã thử áp dụng cho nhiều loại đối tượng học sinh và thấy rằng các em rất thích và làm bài tương đối có kết quả tốt( tất nhiên là chỉ mới giới hạn trong dạng toán này). Rất mong được sự quan tâm giúp đỡ, chia sẽ kinh nghiệm của các quí đồng nghiệp. Xin chân thành cảm ơn. Bình Sơn, ngày 5 tháng 3 năm 2014 Giáo viên LÊ QUANG HUY 33 TÀI LIỆU THAM KHẢO 1. Sách giáo khoa Vật lý 12CB tác giả Lương Duyên Bình, NXB Giáo Dục 2010 2. Sách bài tập Vật lý 12CB tác giả Lương Duyên Bình, NXB Giáo Dục 2010 3. Sách Giải toán Vật lý 12 tác giả: Bùi Quang Hân, NXB Giao dục 2008 4. Phương pháp giải toán Vật lý 12 tác giả Vũ Thanh Khiết, NXB Giáo Dục 2005 5. Phương pháp trả lời trắc nghiệm môn Vật Lý, Tác giả Vũ Thanh Khiết, NXB Hà Nội 2009 6. Đề thi Đại học các năm. 34 [...]...+ Trong toán học một tam giác sẽ giải được nếu biết trước 3 (hai cạnh một góc, hai góc một cạnh, ba cạnh) trong số 6 yếu (ba góc trong và ba cạnh) Để làm điều đó ta sử dụng các định lí hàm số sin và định lí hàm số cosin (xem hình bên) b c  a  sin A = sin B = sin C  2 2 2 a = b + c − 2bc cos A b 2 = c 2 + a 2 − 2ca cos B  c 2 = a 2 + b 2 − 2ab cos C giản đồ véctơ tam giác biết... yếu tố (hai cạnh một góc, hai góc một cạnh), sau đó giải tam giác đó để tìm các yếu tố chưa biết, cứ tiếp tục như vậy cho các tam giác còn lại 11 Độ dài cạnh của tam giác trên giản đồ biểu thị hiệu điện thế hiệu dụng, độ lớn góc biểu thị độ lệch pha 2.2.b Phương pháp véc tơ buộc ( Vẽ giản đồ véc tơ Frexnel) + Chọn trục ngang là trục dòng điện, điểm O làm gốc    + Vẽ lần lượt các véc tơ: U R , U L U... Vẽ giản đồ véc tơ cho đoạn AM Đoạn mạch MB tuy chưa biết nhưng chắc M chắn trên giản đồ nó là một véctơ tiến theo U chiều dòng điện, có độ dài = U V = 80V và 2 U 30 AM U 60 A Y I = U 40 = 40(Ω) 1 25 D 0 30 lx 0 U 30 rx U + Xét tam giác vuông MDB 1 U R = U MB sin 30 0 = 80 = 40(V) 2 Y 0 ry 0 MB dòng điện, do đó Y phải chứa điện trở thuần U 120 U phải chéo xuống thì mới tiến theo chiều UR U M Từ giản đồ. .. saoRcho điện áp B π hiệu dụng giữa hai đầu cuộn dây đạt giá trị cực đại V 31 A L= 0,1 H π 1 H π B L= 2 H π C L= 0,5 H π D L= Bài 3 : Mạch điện xoay chiều nối tiếp gồm cuộn dây có độ tự cảm L, điện trở r và tụ điện C Đặt vào hai đầu đoạn mạch một hiệu điện thế xoay chiều có giá trị hiệu dụng 30V Điều chỉnh C để điện áp trên hai bản tụ đạt giá trị cực đại và bằng số 50V Điện áp hiệu dụng giữa hai đầu cuộn... nối tiếp gồm điện trở thuần R, cuộn cảm thuần có độ tự cảm 1 H và tụ điện có điện dung C thay đổi được Điều chỉnh điện dung của tụ điện 5π để điện áp hiệu dụng giữa hai bản tụ điện đạt giá trị cực đại Giá trị cực đại đó bằng U 3 Điện trở R bằng A 20 2 Ω B 10 2 Ω C 10 Ω D 20 Ω 32 C KẾT LUẬN Như trên đã nói, bài tập vật lý là một phần không thể thiếu trong quá trình giảng dạy bộ môn vật lý ở trường... góc 1200, xác định X, Y và các giá trị của chúng 24 Giải * Vì X cho dòng điện một chiều đi qua nên X không chứa tụ điện Theo đề bài thì X chứa 2 trong ba phần tử nên X phải chứa điện trở thuần (R X) và cuộn dây thuần cảm (LX) Cuộn dây thuần cảm không có tác dụng với dòng điện một chiều nên: = UV 1 I = RX 60 = 30(Ω) 2 * Khi mắc A, B vào nguồn điện xoay chiều : ZAM = UV 1 I 60 = 60(Ω) = R 2X + Z 2L 1 =... ĐIỆN THẾ VÀ CƯỜNG ĐỘ DÒNG ĐIỆN HIỆU DỤNG 1.1 Bài tập có hướng dẫn Bài 1: Cho mạch điện xoay chiều như hình vẽ Cuộn dây thuần cảm Cho biết hiệu điện thế hiệu dụng giữa hai điểm A, B là U AB = 200 (V ) , giữa hai điểm A, M là U AM = 200 2 (V ) và giữa M, B là U MB = 200 (V ) Tính hiệu điện thế hiệu dụng giữa hai đầu điện trở và hai đầu tụ điện Giải: Cách 1: Phương pháp véctơ buộc (xem hình 2 1.a) +... thì mới tiến theo chiều UR U M Từ giản đồ véc tơ ta thấy MB buộc ⇒ RY = i rx được giản đồ véc tơ cho toàn mạch (RY) và tụ điện CY lx AM A uuu hợp với véc tơ AB một góc 1200 ⇒ ta vẽ U AM AB cy i 0 B U L = U MB cos 30 0 = 80 Y ⇒ LY = 3 = 40 3 (V) ⇒ Z L = 40 3 (Ω) 2 Y 40 3 0,4 3 = (H) 100 π π 2.3 Bài toán này trong mạch điện có chứa ba hộp kín BÀI 1: Cho mạch điện chứa ba linh a A X M * N * Y Z kiện ghép... (hình vẽ) hộp X chứa một trong ba phần tử: điện • X C M A trở thuần, cuộn dây, Hình vẽ tụ điện Khi đặt vào hai đầu AB một điện áp xoay chiều có giá trị hiệu dụng 220V, người ta đo được UAM = 120V và UMB = 260V Hộp X chứa: A.cuộn dây thuần cảm B.cuộn dây không thuần cảm C điện trở thuần D tụ điện Câu 11: Đặt vào hài đầu đoạn mạch AB một điện áp u = C A X 100 2 cos(100 π t)(V), -4 π tụ điện có C = 10 / (F)... và điện áp giữa hai đầu đoạn mạch MB có giá trị hiệu dụng bằng nhau nhưng lệch pha nhau 2π/3 Điện áp hiệu dụng giữa hai đầu đoạn mạch AM bằng A 220 2 V B 220/ 3 V C 220 V D 110 V Bài 2: Đoạn mạch điện xoay chiều gồm điện trở thuần 30 (Ω) mắc nối tiếp với cuộn dây Điện áp hiệu dụng ở hai đầu cuộn dây là 120 V Dòng điện trong mạch lệch pha π/6 so với điện áp hai đầu đoạn mạch và lệch pha π/3 so với điện ... nên gọi véc tơ buộc Vận dụng quy tắc hình bình hành để cộng véc tơ toán điện xoay chiều ta có phương pháp véc tơ buộc, vận dụng quy tắc tam giác ta có phương pháp véc tơ trượt (“các véc tơ nối... thuyết mạch điện xoay chiều - Lý thuyết giản đồ véc tơ - Vận dụng lý thuyết để giải số toán IV PHƯƠNG PHÁP NGHIÊN CỨU - Nghiên cứu lý thuyết - Giải tập vận dụng V PHẠM VI ÁP DỤNG: - Trong giới... yêu thích không giỏi môn vật lý cảm thấy đơn giản việc giải tập trắc nghiệm vật lý, chọn đề tài: Vận dụng Giản đồ véc tơ giải số dạng toán Điện xoay chiều ” II MỤC ĐÍCH NGHIÊN CỨU - Làm quen với

Ngày đăng: 24/10/2015, 21:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w