1. Trang chủ
  2. » Giáo án - Bài giảng

Cac truong hop bang nhau cua hai tam giac vuong

19 323 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 0,97 MB

Nội dung

TiÕt 41 Gi¸o viªn :Ph¹m Thanh D­ ¬ng Tr­êng : THCS Hoµ H¶i 09/27/15 Pham Thanh Duong KiĨm tra bµi cò 1) Nh¾c l¹i c¸c tr­êng hỵp b»ng cđa tam gi¸c. µ =D µ = 900 , AC = DF . 2) Cho ∆ABC vµ ∆DEF cã : A CÇn bỉ sung thªm ®iỊu kiƯn nµo ®Ĩ hai tam gi¸c ®ã b»ng nhau? 09/27/15 B E A D C Pham Thanh Duong F B E A D C F ∆ABC = ∆DEF ( c-g-c) B E A C D 09/27/15 B E A C D ∆ABC = ∆DEF ( g-c-g) B E A F Pham Thanh Duong ∆ABC = ∆DEF (c.h-g.n) F C D ? ∆ABC = ∆DEF F ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B H Hình 143 Hình09/27/15 143 C E K I F Pham Thanh Duong Hình Hình144 144 Hình Hình145 145 N ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B 09/27/15 H C Hình Hình143 143 E K F Hình Hình144 144 Pham Thanh Duong I Hình Hình145 145 N ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B A H C Hình Hình143 143 E K F Hình Hình144 144 I Hình Hình145 145 ∆AHB = ∆AHC (c-g-c ) Vì : AH cạnh chung AHB = AHC = 900 B H 09/27/15 Hình 143 Hình 143 C HB = HC (gt ) Pham Thanh Duong N ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B H C Hình Hình143 143 E ∆AHB = ∆AHC (c-g-c ) K F Hình Hình144 144 I Hình Hình145 145 D ∆DKE = ∆DKF (g-c-g ) Vì : DKE = DKF = 900 DK lµ cạnh chung E K 09/27/15 Hình Hình144 144 F EDK = FDK (gt ) Pham Thanh Duong N ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B H C Hình Hình143 143 E ∆AHB = ∆AHC (c-g-c ) K F Hình Hình144 144 I Hình Hình145 145 N ∆DKE = ∆DKF (g-c-g ) M ∆OMI = ∆ONI (cạnh huyền – góc nhọn) O I Vì : OI cạnh huyền chung MOI = NOI (gt ) Hình Hình145 145 09/27/15 N Pham Thanh Duong ?1 ?1 Trên hình 143, 144, 145 có tam giác vuông ? Vì ? A D M O B H C Hình Hình143 143 ∆AHB = ∆AHC (c-g-c ) 09/27/15 E K F Hình Hình144 144 ∆DKE = ∆DKF (g-c-g ) I Hình Hình145 145 N ∆OMI = ∆ONI (cạnh huyền – góc nhọn) Pham Thanh Duong Cho h×nh vÏ B E A C D F Hai tam gi¸c ABC vµ DEF cã b»ng hay kh«ng ? 09/27/15 Pham Thanh Duong * Đònh lý: (SGK/tr 135) Nếu cạnh huyền cạnh góc vuông tam giác vuông cạnh huyền cạnh góc vuông tam giác vuông hai tam giác vuông nhau. 09/27/15 Pham Thanh Duong ?2 ?2 Cho tam giác ABC cân A . Kẻ AH vuông góc với BC ( hình 147 ). Chứng minh rằng: ∆AHB = ∆AHC ( giải hai cách ) A ∆ABC cân A GT AH ⊥ BC H KL ∆AHB = ∆ AHC B H C * Cách 1: ∆AHB = ∆AHC(cạnh huyền-góc nhọn) * Cách 2: ∆AHB = ∆AHC(cạnh huyền-cgv) Hình Hình147 147 09/27/15 Pham Thanh Duong A ∆ABC cân A GT AH ⊥ BC H KL ∆AHB = ∆ AHC B H C Cách : Chứng minh : Hình Hình147 147 Xét hai tam giác vuông AHB vàAHC, có : AB = AC (vì ∆ABC cân A ) B = C (vì ∆ABC cân A) Nên ∆AHB = ∆AHC ( cạnh huyền- góc nhọn ) 09/27/15 Pham Thanh Duong A ∆ABC cân A GT AH ⊥ BC H KL ∆AHB = ∆ AHC B H Hình Hình147 147 C * Cách : Chứng minh : Xét hai tam giác vuông AHB vàAHC, có : AH cạnh góc vuông chung AB = AC (vì ∆ABC cân A ) Nên ∆AHB = ∆AHC ( cạnh huyền- cgv ) Suy HB = HC ( Hai cạnh tương ứng ) 09/27/15 Và BAHPham = CAH ( Hai góc tương ứng ) Thanh Duong BÀI TẬP Điền dấu “X” vào chỗ trống thích hợp : CÂU NỘI DUNG Nếu hai cạnh góc vuông tam giác vuông hai cạnh góc vuông tam giác vuông hai tam giác vuông nhau. Nếu hai tam giác vuông có cạnh góc vuông góc nhọn kề cạnh đôi hai tam giác vuông nhau. Nếu hai tam giác vuông có cạnh huyền góc nhọn hai tam giác vuông nhau. Nếu cạnh huyền cạnh góc vuông tam giác vuông cạnh huyền cạnh góc vuông tam giác vuông hai tam giác vuông nhau. 09/27/15 Pham Thanh Duong ĐÚNG SAI Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra ÁP DỤNG : Bài tập 64 tr. 136 SGK Các tam giác vuông ABC DEF có  = D = 900 , AC = DF. Hãy bổ sung thêm điều kiện ( cạnh hay góc ) để  ABC =  DEF. B E  ABC:  = 900  DEF: D = 90 GT AC = DF KL Điều kiện để  ABC =  DEF F C D Giải :  ABC  DEF có :  = D = 900 ; AC = DF Bổ sung : AB = DE  ABC =  DEF ( c-g-c ) C = F  ABC =  DEF ( g-c-g ) BC = EF  ABC =  DEF(cạnh huyền A 09/27/15 Pham Thanh Duong - cạnh góc vuông ) Nhớ ! HƯỚNG DẪN HỌC BÀI Ở NHÀ  Nắm vững trường hợp hai tam giác vuông.  Trình bày lại tập 63/tr136 SGK  Tiết sau luyện tập. 09/27/15 Pham Thanh Duong BẠN Đà CHỌN SAI! CẦN CỐ GẮNG NHÉ ! 09/27/15 Pham Thanh Duong BẠN GIỎI QUÁ ! BẠN Đà CHỌN ĐÚNG RỒI. 09/27/15 Pham Thanh Duong [...]... = HC ( Hai cạnh tương ứng ) 09/27/15 Và BAHPhamCAH ( Hai góc tương ứng ) = Thanh Duong BÀI TẬP Điền dấu “X” vào chỗ trống thích hợp : CÂU 1 2 3 4 NỘI DUNG Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau Nếu hai tam giác vuông có một cạnh góc vuông và một góc nhọn kề cạnh ấy bằng nhau từng đôi một thì hai tam giác... góc nhọn kề cạnh ấy bằng nhau từng đôi một thì hai tam giác vuông đó bằng nhau Nếu hai tam giác vuông có cạnh huyền và một góc nhọn bằng nhau thì hai tam giác vuông đó bằng nhau Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau 09/27/15 Pham Thanh Duong ĐÚNG SAI Kiểm tra Kiểm tra Kiểm tra Kiểm tra...* Đònh lý: (SGK/tr 135) Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau 09/27/15 Pham Thanh Duong ?2 Cho tam giác ABC cân tại A Kẻ AH vuông góc ?2 với BC ( hình 147 ) Chứng minh rằng: ∆AHB = ∆AHC ( giải bằng hai cách ) A ∆ABC cân tại A GT AH ⊥ BC tại H KL ∆AHB = ∆ AHC * Cách 1: B H... tại H KL ∆AHB = ∆ AHC B H C Cách 1 : Chứng minh : Hình 147 Hình 147 Xét hai tam giác vuông AHB vàAHC, có : AB = AC (vì ∆ABC cân tại A ) B = C (vì ∆ABC cân tại A) Nên ∆AHB = ∆AHC ( cạnh huyền- góc nhọn ) 09/27/15 Pham Thanh Duong A ∆ABC cân tại A GT AH ⊥ BC tại H KL ∆AHB = ∆ AHC B H Hình 147 Hình 147 C * Cách 2 : Chứng minh : Xét hai tam giác vuông AHB vàAHC, có : AH là cạnh góc vuông chung AB = AC (vì... hoặc C = F thì  ABC =  DEF ( g-c-g ) hoặc BC = EF thì  ABC =  DEF(cạnh huyền A 09/27/15 Pham Thanh Duong - cạnh góc vuông ) Nhớ nhé ! HƯỚNG DẪN HỌC BÀI Ở NHÀ  Nắm vững các trường hợp bằng nhau của hai tam giác vuông  Trình bày lại bài tập 63/tr136 SGK  Tiết sau luyện tập 09/27/15 Pham Thanh Duong BẠN Đà CHỌN SAI! CẦN CỐ GẮNG NHÉ ! 09/27/15 Pham Thanh Duong BẠN GIỎI QUÁ ! BẠN Đà CHỌN ĐÚNG RỒI... đó bằng nhau 09/27/15 Pham Thanh Duong ĐÚNG SAI Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra Kiểm tra ÁP DỤNG : Bài tập 64 tr 136 SGK Các tam giác vuông ABC và DEF có  = D = 900 , AC = DF Hãy bổ sung thêm một điều kiện bằng nhau ( về cạnh hay về góc ) để  ABC =  DEF B E  ABC:  = 900  DEF: D = 900 GT AC = DF KL Điều kiện để  ABC =  DEF F C D Giải :  ABC và  DEF có :  = . bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. Nếu hai tam giác vuông có một cạnh góc vuông và một góc nhọn kề cạnh ấy bằng nhau từng đôi một thì hai tam. tam giác vuông đó bằng nhau. Nếu hai tam giác vuông có cạnh huyền và một góc nhọn bằng nhau thì hai tam giác vuông đó bằng nhau. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng. 1) Nh¾c l¹i c¸c trêng hîp b»ng nhau cña 2 tam gi¸c. A B C D E F 2) Cho ∆ABC vµ ∆DEF cã : , AC = DF . CÇn bæ sung thªm ®iÒu kiÖn nµo ®Ó hai tam gi¸c ®ã b»ng nhau? µ µ 0 A D 90 = = 09/27/15

Ngày đăng: 27/09/2015, 17:03

TỪ KHÓA LIÊN QUAN

w