phụ lục về hàm liên tục tuyệt đối
Trang 1-{if],;, r!rf,'fI flutf' fir/' p/'rl}/, !off; fi.fflo,~l; TranK :1Q
PH{) L{)C I
Tinh cha't lien t\,ICtuy~t d6i c':ia mQt ham xac dinh tren mQt do<;ln dil du'<,iCSl( dl,Jng trong su6t lu~n van nay
Dinh nghia 1.1: MQt ham f: [a,b] +IR c1tf<jcgQi la lien tl;lc tuy~t c1{;'i
tren ra,b] ne-u:
"
'\1[;> 0,38> 0: I:1.l(p;)- .l(a;)1 < £
;=1
voi mQi n va mQi hQ cac khoang roi nhau (app,), ,(a",p,,) trong [a,b] c6
t6ng cac c1Qdai
"
I:(p;- a;)< 8
1=1
-Hi~n nhien mQt ham lien tl;}Ctuy~t d6i tren [a,b] thllien tl;}c(don gian ta la'y n =1)
Dinh Iv 1.1: Giel su /: [a,b] +lR lien tl,lc va khong giam Khi d6 hai
di~u ki~n sau la tu'ong dtfong:
i) f: [a,b] +IR lien tl,lCtuy~t d6i.
ii) f kha vi hfiu he-t tren [a,b], f'E L1([a,bD, va
x /(x)- lea) = J/(t)dl,(a S x s b)
a
Chung minh Dinh 19 1.1 c6 th~ fim tha'ytrong [12,W Rudin, p.146-147]
N
F(x) =Slip I:IIU;)- lU;-l)I,(a s x S b)
;=1
trong d6 SUpla'y tren ta't ca N Va Hit ca cach chQn {l;}sao cho:
a = 10 < II < - < IN = X.
Khi d6 cac ha m F, F +f, F-fla khong giam va lien tl;}Ctuy~t d6i tren [a,b].
Gia trj F(h) dlf<jcgQi la bien phan ,toempluln cuaftren [a,b].
Chang minh Dinh 19 1.2 c6 th~ fim tha'y trong [12, W Rudin, p.148]
Trang 2-mal dJII(j flute fir/' ;'/'((11 foa; (l/tJ6(Jf,:)ki Trang 37
Dinh IV 1.3: Gicl stY f: [a,b] ~ IR lien t\le tuy~t do"j, khi d6 fkhcl vi hftu
he"t tren fa,h], f'E LI([a,bD, va
(1.1)
x
f(x)-f(a) = Jl(t)dt, (as:xS:b}
a Chung minh: GQi F la bie"n phan loan phftn euaf, theo dinh ly 1.2, ta d~t
1; = 2(F +f), f2 = 2(F- I).
Ap d\lI1g soy dlin
(1.1)
Dinh lv 1.4: Gicl stY f: [a,b~~ IR khcl vi t(,limQi x E [a,b]va f'E L1aa,bD,
khid6
(1.2)
x /(x)-/(a) = Jl(t)dt, (as:xS:b).
a
Chang minh Dtnh ly I.4 co th~ Om tha"ytrong [12, W Rudin, p.149-150].
w
Trang 3mril d~I-(/"t(; (fro/l,/!/uJn foat" f~jt(o,t)ti Trang 38
PHI) L I) C II
VE BA T DANG THUC OSTROWSKI
Trong mQt bai baa [9] (Comment Math Helv 10 (1938), p
226-227) A Ostrowski aa chung minh mOt bat a~ng thuc sail day:
h
l
(X-~)2
J
lex) - ~ fI(I)dl ~ (b - a) supII'(I)1 ~+ 2 2 '
b-a a a<l<h 4 (b-a)
(ILl)
f': (a, b) ~ JR bj ch~n trong (a,b), tuc la Ilf'IL = suplf'(t)\ < +00 va h~ng s6
a<l<h
hdn
Phac ho(,l cluIng minh cua Ostrmvski [9 J.
ff(x)d\: = (b- a)flea + (b- a)l)dl.
f)~t h(t) =f(a+(b-a)t) =f(x), tE[O,I]
fh(l)dl = b-a fI(x)d\:
V~y (ILl) tucfng du'(jng vdi
I
[
]
her)- fh(s)ds ~ - + (t - _)2 suplh' (1)1,\it E [0,1}
0 4 2 0<1<1
(II.2)
i) Bat d~ng thuc (IL2) hi~n nhien dung ne'u Ilh'IL= suplh'(t)1= O.0<1<1
ii) Giii sa Ilh'll",= suplh'(I)1 ;/:o Bang cach thay h bdi ~ ta co th~ giii
I
her)- fh(s)ds ~~+ (t - ~)2, vai suplh'(t)1= 1,\it E[0,1}
0
1
get) = her) - fh(s)ds, \if E [O,I}
(11.3)
iii) D~t
Trang 4-:1],;1 r/,fl1//jhf{f' (fr!t./lhrlu (oa; (!:!.(;O(rtJ!:; Trang) 9
ta co
I
ff;(S)ds = 0, suplg'(t)1 = 1.
V~y ta se chung minh bfft d~ng thuc
Ig(t)1 ::; (t - 2)2 + 4' \It E [0,11
voi mqi ham g: [O,I]~ IR thaa cac di~u ki~n
(II.S)
I
fg(s)ds = 0, Ig'(t)! ::; I, \It E (0,1),
()
va hhng s6 ~~ xufft hi~n trang (IIA) la t6t nhfft thea nghla r~ng khong the§; thay the' no bhng m0t s6 nho hall
* Chung minh (11.4).
Cho t,sE[0,11taco Ig(t)-g(s)I=lg'(c)(t-s)I::;lt-sl.
V~y
Tich phan bfft c1~ng thuc cua (11.6)thea s E [0,11 ta duQc
g(t) - ]t - slds ::; fg(s)ds = o ::;get) + ]t - slds
hay
Ig(t)l::; flt-slcts'= f(t-s)ds+ f(s-t)ds
1 2 1
=(1 )
* H~ng sf) ~ xuflt hi~n trang (II A) 13 tf)t nhfft
Ig(t)j::; C +(t -~J, \It E [0,1]
(11.7)
Trang 5IfJrl( rlrfJ~'1-_ffl-,!~("II, Alld~ !r)(/[f{J(/O(,:}ki Tran~~9
t£1co
I fr;(s)ds =0, suplg'(t)1 = 1.
0 (kl<1
Ig(t)I~(t-2Y+4' VtE[a,11
voi mqi ham g: [a,l] ~ IR thaa cac di~u ki~n
(II.S)
1
fr;(s)ds = a, Ig'(t)1 ~ 1, Vt E (a,I),
()
thay the' no b~ng mQt s6 nh6 hall
* Chung minh (11.4).
V~y
g(t) - ]1- slds ~ fg(s)ds' = a~ g(t) + ]t- slds
hay
Ig(t)1 ~ Jlt- slds=J(t - s)ds + I(s -/)d~
=(t )
* I-I~ng s6 ~ xui{t hi~n trang (rIA) lil t6t nhi{t
Ig(t)I~C+(t-~J, VtE[a,l]
(11.7)
Trang 63],;1 rfrf1l/l-111ft,.Iff-/' /t/'rill (Off; fJ.ibo((:}J.i Trang 40
voi mQi ham g: [0,1] -).IR thoi! cac di~u ki~n (11.5) Ta se chung minh
~ 1
rangC~-
4
Th~t v~y, chQn ham g(t) = t -~, ta co g tho a cac di~u ki~n (11.5) va co
It- ~I ,; c+(t - ~J, 'if t E [0,1]
hay
(l
t - ~
I
-(t- ~ )
2
J
= max (.'I- .'12)=~s C.
Th~t fa, dtfa vao c15ngthuc (11.3), bftt c15ngthuc Ostrowski (ILl) co th~ chung minh kha don gian bon so vdi [9] nht( sau
f(x) h-a ff(t)dt =-b a f(t-a)f'(t)dt+ f(t-b)f'(t)dt
I
[
]
s-b -a f(t-a)f'(t)dt+ f(t-b)f'(t)dt o<l<hsuplf'(t)1
[
(x - a)2 + (x - b)2
] sup!f'(t)1
[
1
= ~+ 22 (b-a)suplf'(t)l, VxE[a,b],
4 (b-a) o<l<h
(II.9)
. Gii! SU- C E JR thoa bftt dAng thuc
2
a+b
lex) - - ff(t)dt S - + 2
b-aa 4 (b-a) (b - a) sup If' (t)l,
o<l<h
voi illQi X E [a,b], trong do f: [a,b] ~ IR co dC;lO ham tren (a,b) va
1': (a,6) -).IR bi ch~n trong (a,b) Ta se chung minh r~ng C ~ ~
Trang 7'{1M? (/rim/llutf' 1ft-/' j,/,rfJl lorn' (MirlftJl; Trang 41
I
x I
~ c+ 2 l(b-a),'vfxE[a,b].
V~y
a5,x5,h b-a (h-a) 095,1/2 4
(II
Trang 8Mal d;h~? (lute (fellfllriJ/ (oai fM;o(tiki Trang 42
PUT) LT)C III
BAT DANG THUC GRUSS
Nam 1935 (xem[7], Math Z., 39,(1935), p.215- 226), GRUSS da chung minh b§t d~ng thuc sail day:
/ ?
Dinh Iy 111.1: (Bat dang thuc Gruss)
ClIo f,R: [a,h]~ IR khd ({ch sao clIo:
.
l11r ::; f(x)::; Mr,l11J.!::; g(x)::; Mg,Vx E [a,b].
(IlL I) I~Jf(x)g(X)dX-~Jf(X)dx~Jg(X)dx
l
::;~(M -n1 )(M,-m).
kl .
(
a+b
)
,.
1
,(//1fILla, uang t 111exay ra u lex) = R(X)=sign x-2 ' VOl n1f =
n1g=-va M.r =M =1.g
Chung minh:
E>~t ](1) =lex) =f(a + (b - a)/), 0::; t ::;1,a::; x::; b
ff(t)dt =-b-a fJ(x)dx
0 a
Do do ta co th~ gia sli'r~ng a =0, b =1 Khi d6 (111.1) vie't lC;li
(III.2)
I "
I
1
Jf(x)g(x)dx - Jf(x)dxJ g(x)dx ::;_4(Mf - n1f XMg - n1J.!1
trong d6, f,g : [0,1] ~ 1R kha tfch thoa:
l11/::;/(x)::;M/, mg::;g(x)::;Mg,VXE[0,1]
Hon nG'a, (IIL2) xay ra d~ng thuc khi
(
1
)
l(x)=g(x) = sign x-2' VOl n1f =mg =-1 va Mf =Mg ::'::1.
Trude he't ta din b6 d~ sau
RG d~ 111.1:Gia sli' l,g E L2 = L2(0,1),
ta c6:
I
I
[
I
(
'
)
2
]
~
Trang 9$,;1 mill//- 111ft£" Iklt pltfill lord (Jd(;(J(t)k; Trang 43
I
I
Jf(x)g(x)dx - J f(x)d:<J g(X)d:< ::;;Ilflll} Ilgll/."
Chung minh B6 d~ 111.1:
Ta co
(IlIA)
R
I
J
(IlLS) Iff(x)g(x)dx - ff(x)dx fg(x)d:< = lex) - ff(x)d:< g(x)d:<
~ [Af(X) - !f(X)dX Jr(fg'(X)dx )~
I
[
(
I
)
2
]
2
= ff2(X)d'C - 2 ff(X)d:< ff(X)dX + ff(X)d:< IlgIIL'
I
= [If'(X)dx-(jf(X)dx HI,g""
Ba"tdftng thuc (Ill.3) dt(Qc chung
minh.-Ba't dftng thuc (IlIA) Ut«;1cchung minh nhC1vao bfit dftng thuc:
[jf'(X)dx-(!f(X)dx n s[1f'(X)dX]' ~llfll"
B6 d~ sau day cho ta b§t dftng th((c III.2, tuc la dinh 19 III.! duQc chung
minh.-B6 d~ 111.2:
Gia suf, gEL00= L00(0,1), thoa:
nIJ::;; f(x)::;; MJ,nI~ ::;;g(x)::;; M~,\;jx E [0,1].
Khi do :
(IIL6)
I
1
fj(x)g(x)d:< - fj(x)d:< fg(x)d:< ::;;-(M J - nIJ)(Mg - nIg).
Chung minh B6 d~ 111.2: Voi c, d E JR, trong ba"tdftng thlic (IlIA) thay
f, g baif -c, g -d, ta co:
(III 7) Ihf(x)0 - c ][g(x) - d]dx - hf(x)0 - c ]d:<J[g(x) - d]dxl::;; III - cllL,llg- dill,"0
v~ tnii cua (III.7) la:
I
(111.8) VI' =Hj(x)-c][g(x)-d]d:<- Hj(x)-c]d:<Hg(x)-d]d:<
=IIf(x)g(x)d:< - I f(x)d:(I g(x)dx
Trang 10mal d(/J~r fluff' ffrl!Ji.ll(iJi frl(/('fJ:}6()(~k; Trang 44
(III 9)
ff(x)~(x)dx- fI(x)dx fg(x)dxl ~lIf -4.~llg-dll/.~'
Ve,d E IR
Chon, c = ~(M + 111} d = ~(M + 111} ta thu dudc:
III - ell '0 ~
1
M I - ~(M f + m1)
1
I
M f - 111r1 = ~(M f - 111 r)
TltOng ttf, ta (1uQc:
I jig- dll ~ - ( M - 111)
Cu6i clIng,
(III.I0)
I
1
f I(x)g(x)dx - f f(x)dxf g(x)d~ ~ -(M f -l11f XMg -l11g 1
V~y b6 de (JIL2) dl(QCcl1lIng minh,lI
B6 de sail day cho ta ba"tdfing thuc (4,3) (Dinh Iy 4.2, chuang IV)
B6 d~ 111.3:
Khi d6
I
[
I
(
I
J
2
]
~
(111.11) fI(x)g(x)dx - fI(x)dx fg(x)dx ~ ~(Mg - I11g) ff2(X)dx - ff(x)dx ,
Chung minh Be) d~ 111.3:
Trang ba"td~ng thuc (lII.3) thay g bdi g-d, voi dEIR ta co:
ff(x)[g(x)-d]dx- ff(x)dr f[g(x)-d]dx
s [1 ['(x)<1< -(1 f(x)dx )}Ig - d1!"
ma ve"tnii cua (IIL12) la:
(III 13)
VT= Iff(x)[g(x) - d]dx - ff(x)dx ~g(x) - d]dx
=IfJ(x)g(x)dx - fJ(x)dx fg(x)dxl.
ChQn d=~(MI! +1111!)t3 thu dl(QC VPcua2 (III 12) la
Trang 11$fil dtfl'{f /lute licit jtlui4t kat @oAouMi
(III 14 )
Trang 45
1
Vp= [!f2(X)dx-(Jf(X)dX rr jig-dilL'
1
1
~[Jf2(X)dx-(Jf(X)dx)']' ~(Mg -mg)
1
14).-Chu thich 111.1: f)~ng thuc tfong (III.2) Kay fa khi:
(III.I5)
Th~tv~y
(III.I6)
(
l
)
".
f/(x)g(x)dx = f/2(X)dx = fIdx = 1,
2
f/(x)dx fg(x)dx =
(f/(X)dx ) = f/(x)dx + f/(x)dx.
0 0 ,- 0 0 Ii
(
Ii
J
2
= f(-I)dx+ JIdx =0
v€ tnii cua (III.2) Hi:
(III 17)
VT= If/(x)g(x)dx - f/(x)dx fg(x)dxl = 1.
v~y VT=VP va do d6 (III.2) Kay fa d~ng
Trang 12thuc.-£lJdl dil~'!I tluJ:(;twit jtluin /au: (!J)tiOf4Id Trang 46
Chu thich III.~:
Theo Chu thich (III 1) thl hang sf) ~trong bfft dAng thuc (IIL2) la 4
tf)t nhfft Th~t v~y, ne"ubfft dAng thuc (UL2) dung vdi hang sf) C thay cho
h~ang so -:"" 1
4
(IlL 19)
fl(x)g(x)dx - fJ(x)dx fg(x)dxl 5.C(M j - mj )(Mg - mg)
mj <S.J(x) <S.Mj' mg 5 g(x) <S.Mg, \!XE [O,1}
Khi d6 (IlL 19) tra thanh
(IIl.20)
fJ(x)g(x)dx - fJ(x)dx fg(x)dxl = 15.C(M j - mj )(Mg - mg) =4C
Chu thich III.3:
BAng thuc trong (III 11) xiiy ra khi:
Hon nlla, hang sf) 1/ 2 trong bfft dAngthuc (IlLll) la tf)t nhfft.8
w