1. Trang chủ
  2. » Trung học cơ sở - phổ thông

PHƯƠNG PHÁP GIẢI TOÁN KHẢO SÁT HÀM SỐ

18 436 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,13 MB

Nội dung

LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG Các bài cơ bản KHẢO SÁT HÀM SỐ 1 LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG Bài 1. Cho hàm số y = 2 5 3 2 2 4 +− x x 1. Khảo sát sự biến thiên và vẽ đồ thi (C) của hàm số. 2. Cho điểm M thuộc (C) có hoành độ x M = a. Viết phương trình tiếp tuyến của (C) tại M, với giá trị nào của a thì tiếp tuyến của (C) tại M cắt (C) tại hai điểm phân biệt khác M. Giải. 2/ + Vì         +−⇒∈ 2 5 3 2 ;)( 2 4 a a aMCM . Ta có: y’ = 2x 3 – 6x aaay 62)(' 3 −=⇒ Vậy tiếp tuyến của (C) tại M có phương trình : 2 5 3 2 ))(63( 2 4 3 +−+−−= a a axaay . + Xét pt : 0)632()( 2 5 3 2 ))(63( 2 5 3 2 2222 4 32 4 =−++−⇔+−+−−=+− aaxxaxa a axaax x    =−++= = ⇔ 0632)( 22 aaxxxg ax YCBT khi pt g(x) = 0 có 2 nghiệm phân biệt khác a    ±≠ > ⇔      ≠ >− ⇔    ≠ >∆ ⇔ 1 3|| 1 03 0)( 0' 2 2 a a a a ag Bài 2. Cho hàm số 1− = x x y (C). 1. Khảo sát sự biến thiên và vẽ đồ thi (C) của hàm số. 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Giải. 2/ Giả sử )() 1 ;( 0 0 0 C x x xM ∈ − mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối xứng đến tiếp tuyến là lớn nhất. Phương trình tiếp tuyến tại M có dạng : 0 0 2 0 0 1 ( ) ( 1) 1 x y x x x x = − − + − − 2 0 2 2 0 0 1 0 ( 1) ( 1) x x y x x ⇔ − − + = − − Ta có d(I ;tt) = 4 0 0 )1( 1 1 1 2 − + − x x .Đặt t = 1 1 0 −x > 0 Xét hàm số f(t) 4 2 ( 0) 1 t t t > + ta có f’(t) = 2 4 4 (1 )(1 )(1 ) (1 ) 1 t t t t t − + + + + t 0 1 ∞+ f’(t) = 0 khi t = 1 f’(t) + 0 - Bảng biến thiên 2 Lấ QUANG CHIN 0904137261-0944553764 LUYN THI I HC CAO NG t bng bin thiờn ta cú f(t) 2 d(I ;tt) ln nht khi v ch khi t = 1 hay 0 0 0 2 1 1 0 x x x = = = + Vi x 0 = 0 ta cú tip tuyn l y = -x + Vi x 0 = 2 ta cú tip tuyn l y = -x+4 Bi 3. Cho hm s 2 4 1 x y x = + . 1. Kho sỏt s bin thiờn v v th (C) ca hm s. 2. Tỡm trờn th (C) hai im i xng nhau qua ng thng MN bit M(-3; 0) v N(-1; -1). Gii. 2. Gi 2 im cn tỡm l A, B cú 6 6 ;2 ; ;2 ; , 1 1 1 A a B b a b a b ữ ữ + + Trung im I ca AB: I 2 2 ; 2 1 1 a b a b a b + + ữ + + Pt ng thng MN: x + 2y +3= 0 Cú : . 0AB MN I MN = uuur uuuur => 0 (0; 4) 2 (2;0) a A b B = => = Bi 4. Cho hm s 34 24 += xxy . 1. Kho sỏt s bin thiờn v v th )(C ca hm s ó cho. 2. Bin lun theo tham s k s nghim ca phng trỡnh k xx 334 24 =+ . Gii. 2. th hm s 34 24 += xxy gm phn nm phớa trờn Ox v i xng ca phn nm phớa di Ox qua Ox ca th (C); k y 3= l ng thng song song vi Ox. T ú ta cú kt qu: * 013 << k k : phng trỡnh cú 8 nghim, * 013 == k k : phng trỡnh cú 6 nghim, * 10331 <<<< k k : phng trỡnh cú 4 nghim, * 133 == k k : phng trỡnh cú 3 nghim, * 133 >> k k : phng trỡnh cú 2 nghim. Bi 5. Cho hàm số 1 12 + = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Tìm tọa độ điểm M sao cho khoảng cách từ điểm )2;1(I tới tiếp tuyến của (C) tại M là lớn nhất . Gii. 2. Nếu )( 1 3 2; 0 0 C x xM + thì tiếp tuyến tại M có phơng trình )( )1( 3 1 3 2 0 2 00 xx xx y + = + + hay 0)1(3)2()1()(3 0 2 00 =++ xyxxx 3 x y O 1 3 1 1 1 Lấ QUANG CHIN 0904137261-0944553764 LUYN THI I HC CAO NG . Khoảng cách từ )2;1(I tới tiếp tuyến là ( ) 2 0 2 0 4 0 0 4 0 00 )1( )1( 9 6 )1(9 16 19 )1(3)1(3 ++ + = ++ + = ++ + = x x x x x xx d . Theo bất đẳng thức Côsi 692)1( )1( 9 2 0 2 0 =++ + x x , vây 6d . Khoảng cách d lớn nhất bằng 6 khi ( ) 3131)1( )1( 9 0 2 0 2 0 2 0 ==++= + xxx x . Vậy có hai điểm M : ( ) 32;31 + M hoặc ( ) 32;31 + M Bi 6. Cho hàm số 1x 2x y + = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C). 2. Cho điểm A(0;a) .Xác định a đẻ từ A kẻ đợc hai tiếp tuyến tới (C) sao cho hai tiếp điểm tơng ứng nằm về hai phía trục ox. Gii. 2. Phơng trình tiếp tuyến qua A(0;a) có dạng y=kx+a (1) Điều kiện có hai tiếp tuyến qua A: = = + )3(k )1x( 3 )2(akx 1x 2x 2 có nghiệm 1x Thay (3) vào (2) và rút gọn ta đợc: )4(02ax)2a(2x)1a( 2 =+++ Để (4) có 2 nghiệm 1x là: > >+= = 2a 1a 06a3' 03)1(f 1a Hoành độ tiếp điểm 21 x;x là nghiệm của (4) Tung độ tiếp điểm là 1x 2x y 1 1 1 + = , 1x 2x y 2 2 2 + = Để hai tiếp điểm nằm về hai phía của trục ox là: 0 )2x)(1x( )2x)(2x( 0y.y 21 21 21 < ++ < 3 2 a0 3 6a9 0 1)xx(xx 4)xx(2xx 2121 2121 >< + < ++ +++ Vậy 1a 3 2 < thoả mãn đkiện bài toán. Bi 7. Cho hm s 1 . 1 x y x + = 1.Kho sỏt s bin thiờn v v th ( ) C ca hm s. 2.Bin lun theo m s nghim ca phng trỡnh 1 . 1 x m x + = Gii. 2. Hc sinh lp lun suy t th (C) sang th ( ) 1 ' 1 x y C x + = .Hc sinh t v hỡnh Suy ra ỏp s 4 LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG 1; 1:m m< − > phương trình có 2 nghiệm 1:m = − phương trình có 1 nghiệm 1 1:m− < ≤ phương trình vô nghiệm Bài 8. Cho hàm số 2x 3 y x 2 − = − có đồ thị (C). 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) 2.Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất . Giải. Vậy điểm M cần tìm có tọa độ là : (2; 2) Bài 9. Cho hàm số y = x 3 – 3x 2 +2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. Giải. 2. Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B(2;-2) Xét biểu thức P=3x-y-2 Thay tọa độ điểm A(0;2)=>P=-4<0, thay tọa độ điểm B(2;-2)=>P=6>0 Vậy 2 điểm cực đại và cực tiểu nằm về hai phía của đường thẳng y=3x-2, để MA+MB nhỏ nhất => 3 điểm A, M, B thẳng hàng Phương trình đường thẳng AB: y= - 2x+2 Tọa độ điểm M là nghiệm của hệ: 4 3 2 5 2 2 2 5 x y x y x y  =  = −   ⇔   = − +   =   => 4 2 ; 5 5 M    ÷   Bài 10. Cho hàm số 2 + − = x xm y có đồ thị là )( m H , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi 1 = m . 2. Tìm m để đường thẳng 0122: =−+ yxd cắt )( m H tại hai điểm cùng với gốc tọa độ tạo thành một tam giác có diện tích là . 8 3 = S Giải. 5 2. Lấy điểm 1 M m;2 m 2   +  ÷ −   ( ) C∈ . Ta có : ( ) ( ) 2 1 y' m m 2 = − − . Tiếp tuyến (d) tại M có phương trình : ( ) ( ) 2 1 1 y x m 2 m 2 m 2 = − − + + − − Giao điểm của (d) với tiệm cận đứng là : 2 A 2;2 m 2   +  ÷ −   Giao điểm của (d) với tiệm cận ngang là : B(2m – 2 ; 2) Ta có : ( ) ( ) 2 2 2 1 AB 4 m 2 8 m 2   = − + ≥   −     . Dấu “=” xảy ra khi m = 2 LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG 2. Hoành độ giao điểm A, B của d và )( m H là các nghiệm của phương trình 2 1 2 +−= + +− x x mx 2,0)1(22 2 −≠=−++⇔ xmxx (1) Pt (1) có 2 nghiệm 21 , xx phân biệt khác 2−      −≠ < ⇔    ≠−+−− >−=∆ ⇔ 2 16 17 0)1(22)2.(2 01617 2 m m m m . Ta có .1617. 2 2 4)(.2)(.2)()( 21 2 12 2 12 2 12 2 12 mxxxxxxyyxxAB −=−+=−=−+−= Khoảng cách từ gốc tọa độ O đến d là . 22 1 =h Suy ra , 2 1 8 3 1617. 2 2 . 22 1 . 2 1 2 1 =⇔=−== ∆ mmABhS OAB thỏa mãn. Bài 11. Cho hàm số 3 5 )23()1( 3 2 23 −−+−+−= xmxmxy có đồ thị ),( m C m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi .2 = m 2. Tìm m để trên )( m C có hai điểm phân biệt );(),;( 222111 yxMyxM thỏa mãn 0. 21 > xx và tiếp tuyến của )( m C tại mỗi điểm đó vuông góc với đường thẳng .013: =+− yxd Giải. 2. Ta có hệ số góc của 013: =+− yxd là 3 1 = d k . Do đó 21 , xx là các nghiệm của phương trình 3' −=y , hay 323)1(22 2 −=−+−+− mxmx 013)1(22 2 =−−−−⇔ mxmx (1) Yêu cầu bài toán ⇔ phương trình (1) có hai nghiệm 21 , xx thỏa mãn 0. 21 >xx      −<<− −< ⇔      > −− >++−=∆ ⇔ . 3 1 1 3 0 2 13 0)13(2)1(' 2 m m m mm Vậy kết quả của bài toán là 3−<m và . 3 1 1 −<<− m Bài 12. Cho hàm số . 2 3 42 24 +−= xxy 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2. Tìm m để phương trình sau có đúng 8 nghiệm thực phân biệt . 2 1 | 2 3 42| 224 +−=+− mmxx Giải. 2. Phương trình 2 1 | 2 3 42| 224 +−=+− mmxx có 8 nghiệm phân biệt ⇔ Đường thẳng 2 1 2 +−= mmy cắt đồ thị hàm số | 2 3 42| 24 +−= xxy tại 8 điểm phân biệt. Đồ thị | 2 3 42| 24 +−= xxy gồm phần (C) ở phía trên trục Ox và đối xứng phần (C) ở phía dưới trục Ox qua Ox. 6 O 1− 1 y 2 1 − 2 3 2 1 x Lấ QUANG CHIN 0904137261-0944553764 LUYN THI I HC CAO NG T th suy ra yờu cu bi toỏn 2 1 2 1 0 2 <+< mm .100 2 <<< mmm Bi 13. Cho hm s mxxmxy ++= 9)1(3 23 , vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s ó cho ng vi 1=m . 2. Xỏc nh m hm s ó cho t cc tr ti 21 , xx sao cho 2 21 xx . Gii. 2. Ta có .9)1(63' 2 ++= xmxy +) Hàm số đạt cực đại, cực tiểu tại 21 , xx phơng trình 0'=y có hai nghiệm pb là 21 , xx Pt 03)1(2 2 =++ xmx có hai nghiệm phân biệt là 21 , xx . < +> >+= 31 31 03)1(' 2 m m m )1( +) Theo định lý Viet ta có .3);1(2 2121 =+=+ xxmxx Khi đó ( ) ( ) 41214442 2 21 2 2121 ++ mxxxxxx )2(134)1( 2 + mm Từ (1) và (2) suy ra giá trị của m là 313 < m và .131 <+ m Bi 14. Cho hm s 2)2()21( 23 ++++= mxmxmxy (1) m l tham s. 1. Kho sỏt s bin thiờn v v th (C) ca hm s (1) vi m=2. 2. Tỡm tham s m th ca hm s (1) cú tip tuyn to vi ng thng d: 07 =++ yx gúc , bit 26 1 cos = . Gii. 2. Gi k l h s gúc ca tip tuyn tip tuyn cú vộct phỏp )1;( 1 = kn d: cú vộct phỏp )1;1( 2 =n Ta cú = = =+ + == 3 2 2 3 0122612 12 1 26 1 . cos 2 1 2 2 21 21 k k kk k k nn nn Yờu cu ca bi toỏn tha món ớt nht mt trong hai phng trỡnh: 1 / ky = (1) v 2 / ky = (2) cú nghim x =++ =++ 3 2 2)21(23 2 3 2)21(23 2 2 mxmx mxmx 0 0 2 / 1 / 034 0128 2 2 mm mm 1; 4 3 2 1 ; 4 1 mm mm 4 1 m hoc 2 1 m Bi 15. Cho hm s y = 2 2 x x (C) 1. Kho sỏt s bin thiờn v v th hm s (C). 7 cú nghim cú nghim LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG 2. Tìm m để đường thẳng (d ): y = x + m cắt đồ thị (C) tại 2 điểm phân biệt thuộc 2 nhánh khác nhau của đồ thị sao cho khoảng cách giữa 2 điểm đó là nhỏ nhất. Tìm giá trị nhỏ nhất đó. Giải. 2. Để (d) cắt (C) tại 2 điểm phân biệt thì pt 2 2 x x m x = + − hay x 2 + (m - 4)x -2x = 0 (1) có 2 nghiệm phân biệt khác 2. Phương trình (1) có 2 nghiệm phân biệt khác 2 khi và chỉ khi 2 16 4 0 m m  ∆ = + ∀  − ≠  (2). Giả sử A(x 1 ;y 1 ), B(x 2 ;y 2 ) là 2 giao điểm khi đó x 1 , x 2 là 2 nghiệm phương trình (1). Theo định lí viet ta có 1 2 1 2 4 (3) 2 x x m x x m + = −   = −  , y 1 =x 1 +m, y 2 =x 2 +m Để A, B thuộc 2 nhánh khác nhau của đồ thị thì A, B nằm khác phía đối với đt x – 2 = 0. A, B nằm khác phía đối với đt x – 2 = 0 khi và chỉ khi (x 1 - 2)(x 2 - 2) < 0 hay x 1 x 2 – 2(x 1 + x 2 ) +4 < 0 (4) thay (3) vào 4 ta được – 4 < 0 luôn đúng (5) mặt khác ta lại có AB = 2 2 2 1 2 1 2 1 2 1 2 ( ) ( ) 2( ) 8x x y y x x x x− + − = + − (6) thay (3) vào (6) ta được AB = 2 2 32 32m + ≥ vậy AB = 32 nhỏ nhất khi m = 0 (7). Từ (1), (5), (7) ta có m = 0 thoả mãn . Bài 16. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2 1 1 x y x − = − 2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng 2 . Giải. 2. Tiếp tuyến của (C) tại điểm 0 0 ( ; ( )) ( )M x f x C∈ có phương trình 0 0 0 '( )( ) ( )y f x x x f x= − + Hay 2 2 0 0 0 ( 1) 2 2 1 0x x y x x+ − − + − = (*) *Khoảng cách từ điểm I(1;2) đến tiếp tuyến (*) bằng 2 0 4 0 2 2 2 1 ( 1) x x − ⇔ = + − giải được nghiệm 0 0x = và 0 2x = *Các tiếp tuyến cần tìm : 1 0x y+ − = và 5 0x y+ − = Bài 17. Cho hàm số y = - x 3 + 3mx 2 -3m – 1. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1. 2. Tìm các giá trị của m để hàm số có cực đại, cực tiểu. Với giá trị nào của m thì đồ thị hàm số có điểm cực đại, điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0. Giải. 2. Ta có y’ = - 3x 2 + 6mx ; y’ = 0 ⇔ x = 0 v x = 2m. Hàm số có cực đại , cực tiểu ⇔ phương trình y’ = 0 có hai nghiệm phân biệt ⇔ m ≠ 0. Hai điểm cực trị là A(0; - 3m - 1) ; B(2m; 4m 3 – 3m – 1) 8 LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG Trung điểm I của đoạn thẳng AB là I(m ; 2m 3 – 3m – 1) Vectơ 3 (2 ;4 )AB m m= uuur ; Một vectơ chỉ phương của đường thẳng d là (8; 1)u = − r . Hai điểm cực đại , cực tiểu A và B đối xứng với nhau qua đường thẳng d ⇔ I d AB d ∈   ⊥  ⇔ 3 8(2 3 1) 74 0 . 0 m m m AB u  + − − − =   =   uuur r ⇔ m = 2 Bài 18. Cho hàm số 13 3 +−= xxy (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Định m để phương trình sau có 4 nghiệm thực phân biệt: mmxx 33 3 3 −=− Giải. 2. Phương trình đã cho là phương trình hồnh độ giao điểm giữa đồ thị (C’) của hàm số: 13 3 +−= xxy và đường thẳng (d): 13 3 +−= mmy ((d) cùng phương với trục hồnh) Xét hàm số: 13 3 +−= xxy , ta có: + Hàm số là một hàm chẵn nên (C’) nhận trục Oy làm trục đối xứng, đồng thời 0x ∀ > thì 3 3 3 1 3 1y x x x x= − + = − + + Dựa vào đồ thị (C’) ta suy ra điều kiện của m để phương trình đã cho có 4 nghiệm phân biệt là: 3 3 3 2 3 3 0 1 3 1 1 0 3 3 2 0 1 m m m m m m m m m  − < < −   − <  − < − + < ⇔ ⇔    < <    − + >   ≠    Bài 19. Cho hµm sè 3 1 x y x − = + cã ®å thÞ lµ (C) 1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cđa hµm sè. 2) ViÕt ph¬ng tr×nh tiÕp tun cđa ®å thÞ hµm sè, biÕt tiÕp tun ®ã c¾t trơc hoµnh t¹i A, c¾t trơc tung t¹i B sao cho OA = 4OB Giải. 2. OA =4OB nªn ∆ OAB cã 1 tan 4 OB A OA = = ⇒ TiÕp tun AB cã hƯ sè gãc k = 1 4 ± Ph¬ng tr×nh y’ = k 2 3 4 1 5 ( 1) 4 x x x =  ⇔ = ⇔ ⇔  = − +  +) x = 3 ⇒ y=0, tiÕp tun cã ph¬ng tr×nh 1 ( 3) 4 y x= − +) x= -5 ⇒ y= 2, tiÕp tun cã ph¬ng tr×nh 1 1 13 ( 5) 2 4 4 4 y x y x= + + ⇔ = + Bài 20. Cho hàm số 1 1 x y x − = + . 1) Khảo sát sự biến thiên và vẽ đồ thò (C) của hàm số. 2) Tìm a và b để đường thẳng (d): y ax b= + cắt (C) tại hai điểm phân biệt đối xứng nhau qua đường thẳng ( ∆ ): 2 3 0x y− + = . Giải. 9 x y 0 1 −2 −1 2 1 • • • • −1 3 • (d) LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG 2. Phương trình của ( )∆ được viết lại: 1 3 2 2 y x= + . Để thoả đề bài, trước hết (d) vuông góc với ( )∆ hay 2a = − Khi đó phương trình hoành độ giao điểm giữa (d) và (C): 1 2 1 x x b x − = − + + ⇔ 2 2 ( 3) ( 1) 0x b x b− − − + = . (1) Để (d) cắt (C) tại hai điểm phân biệt A, B ⇔ (1) có hai nghiệm phân biệt ⇔ 0 ∆ > ⇔ 2 2 17 0b b+ + > ⇔ b tuỳ ý. Gọi I là trung điểm của AB, ta có 3 2 4 3 2 2 A B I I I x x b x b y x b  + − = =    +  = − + =   . Vậy để thoả yêu cầu bài toán ⇔ ton tai , ( ) ( ) à ï A B AB I   ⊥ ∆   ∈ ∆  ⇔ 2 2 3 0 I I b a x y  ∀  = −   − + =  ⇔ 2 3 ( 3) 3 0 4 a b b  = −   − − + + =   ⇔ 2 1 a b  = −  = −  . Bài 21. Cho hµm sè 1 1 x y x + = − ( 1 ) cã ®å thÞ ( )C . 1. Kh¶o s¸t vµ vÏ ®å thÞ cđa hµm sè ( 1). 2. Chøng minh r»ng ®êng th¼ng ( ) : 2d y x m= + lu«n c¾t (C) t¹i hai ®iĨm ph©n biƯt A, B thc hai nh¸nh kh¸c nhau. X¸c ®Þnh m ®Ĩ ®o¹n AB cã ®é dµi ng¾n nhÊt. Giải. 2. Chøng minh r»ng ®êng th¼ng ( ) : 2d y x m= + lu«n c¾t (C) t¹i hai ®iĨm ph©n biƯt A, B thc hai nh¸nh kh¸c nhau. X¸c ®Þnh m ®Ĩ ®o¹n AB cã ®é dµi ng¾n nhÊt . . §Ĩ ®êng th¼ng (d) lu«n c¾t ( C ) t¹i hai ®iĨm ph©n biƯt th× ph¬ng tr×nh. 1 2 1 x x m x + = + − cã hai nghiƯm ph©n biƯt víi mäi m vµ 1 2 1x x< < 1 ( 1)(2 ) 1 x x x m x + = − +  ⇔  ≠  cã hai nghiƯm ph©n biƯt 1 2 1x x< < 2 2 ( 3) 1 0 (*) 1 x m x m x  + − − − = ⇔  ≠  cã hai nghiƯm ph©n biƯt 1 2 1x x< < ⇔ 0 (1) 0f ∆ >   <  2 ( 1) 16 0 (1) 2 ( 3) 1 2 0 m m f m m  ∆ = + + > ∀ ⇔  = + − − − = − <  VËy víi mäi gi¸ trÞ cđa m th×®êng th¼ng ( ) : 2d y x m= + lu«n c¾t (C) t¹i hai ®iĨm ph©n biƯt A, B thc hai nh¸nh kh¸c nhau. . Gäi 1 1 2 2 ( ;2 ), ( ;2 )A x x m B x x m+ + lµ hai ®iĨm giao gi÷a (d) vµ (C).( 1 2 ;x x lµ hai nghiƯm cđa ph¬ng tr×nh (*)) Ta cã 2 2 2 2 1 2 1 2 1 2 1 2 1 ( ;2( )) ( ) (2( )) 5( )AB x x x x AB x x x x x x= − − ⇒ = − + − = − uuur Theo Vi Ðt ta cã 2 1 5 ( 1) 16 2 5 2 AB m m   = + + ≥ ∀   . 2 5 1AB m= ⇔ = − VËy víi m = -1 lµ gi¸ trÞ cÇn t×m. (R) 10 [...]... ) x y 0 + + 0 T ú ta c : (*) m 0 2x + 1 có đồ thị là (C) x+2 1 .Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2.Chứng minh đờng thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B Tìm m để đoạn AB có độ dài nhỏ nhất Gii 2 Hoành độ giao điểm của đồ thị (C ) và đờng thẳng d là nghiệm của phơng trình Bi 26 Cho hàm số y = x 2 2x + 1 = x + m 2 x+2 x + (4 m) x + 1 2m = 0 (1) . cơ bản KHẢO SÁT HÀM SỐ 1 LÊ QUANG CHIẾN 0904137261-0944553764 –LUYỆN THI ĐẠI HỌC –CAO ĐẢNG Bài 1. Cho hàm số y = 2 5 3 2 2 4 +− x x 1. Khảo sát sự biến thiên và vẽ đồ thi (C) của hàm số. 2 25. Cho hàm số y = − x 3 − 3x 2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã. bài toán M(0;1) và M(-4;5) Bài 23. Cho hàm số 4 2 ( ) 8x 9x 1y f x= = − + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương

Ngày đăng: 15/08/2015, 21:49

TỪ KHÓA LIÊN QUAN

w