1. Trang chủ
  2. » Luận Văn - Báo Cáo

CHÍNH SÁCH TIỀN TỆ VÀ TỶ SUẤT SINH LỢI CỦA THỊ TRƯỜNG CHỨNG KHOÁN VIỆT NAM LUẬN VĂN THẠC SĨ.PDF

68 287 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 1,85 MB

Nội dung

- - - i L IC xin g i l i c nghi ih i H c Kinh T u ki n th c hi ii L iii M CL C L IC i L ii M C L C iii DANH M U, CH VI T T T vi DANH M vii DANH M NG, BI U viii GI I THI U 1.1 tv 1.2 V u 1.3 M u 1.4 u 1.5 P u .5 1.6 C U TH C NGHI M6 2.1 nt 2.1.1 2.1.2 i nhu n th ng ch n t L i nhu n th 2.2 ng ch u th c nghi m .11 2.2.1 u t ng th v n t ng ch ng 11 2.2.2 ph n ng c u c n Sack (2001) nt n th ng ch ng 13 iv 2.2.3 u c a Godwin Okpara Chigozie (2010) i nhu n th ng ch 2.2.4 n ch ng t Nigeria 15 u c (2009) th nt nt i nhu n th ng ch n ch ng t ng Anh 17 2.2.5 uc 2.2.6 n uc 19 nh ng c t Nam .20 2.2.7 t k t qu u th c nghi m .21 U, CH N M U, THU TH LI U 22 3.1 3.2 3.3 u .22 u ki nh c 22 c ch n bi n 23 3.4 Chu i s li u 24 3.5 li u 24 K T QU U 25 4.1 H n (2SLS) 25 4.2 K t qu c a ki nh nghi 26 4.3 Ki t Engle-Granger .27 4.4 Ki t Johansen-Juselius .29 4.5 4.6 u ch nh sai s VECM .30 t k t qu K T LU N, G u 34 N CH C NG LAI 35 v 5.1 K t lu n 35 5.2 G 35 5.3 H n ch c 5.3.1 5.3.2 H n ch c 36 .36 37 U THAM KH O 38 PH L C 43 vi DANH M U, CH theoDickey- APT: Arbitrage Pricing Theory CAPM: Capital Asset Pricing Model MPC: y ban n t Anh c PP: Ki nh nghi theo Phillips-Perron t kh u quy VECM: Vector Error Correction Models VN-Index: VI T T T vii DANH M C - th i quy .9 viii DANH M C B ng 3- B NG, BI U n .24 B ng 4-1.K t qu ki B ng 4-2.Ki B ng 4-3.K t qu ki B ng 4-4.K t qu c nh nghi .27 t cho t ng c p bi n 28 t c a Johansen 29 u ch nh sai s VECM 31 B ng 4-5.K t qu ki bi ng c a l i nhu n ch B ng 4-6.K t qu ki bi ng c 32 t 33 44 Estimation Command: ===================== TSLS(DERIV=AA) Estimated Equations: ===================== INTRATE=C(1)+C(2)*RDR TBRATE=C(3)+C(4)*RDR Substituted Coefficients: ===================== INTRATE=5.63006995503+0.84313373243*RDR TBRATE=1.83709769559+0.764403521144*RDR Null Hypothesis: RT has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.453617 0.0000 -3.478547 -2.882590 -2.578074 *MacKinnon (1996) one-sided p-values Null Hypothesis: RT has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.296650 0.0000 -3.478547 -2.882590 -2.578074 45 *MacKinnon (1996) one-sided p-values Residual variance (no correction) HAC corrected variance (Bartlett kernel) 21.99939 19.83484 Null Hypothesis: D(RT) has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical 1% level values: 5% level 10% level Prob.* -12.15676 0.0000 -3.479656 -2.883073 -2.578331 Null Hypothesis: D(RT) has a unit root Exogenous: Constant Bandwidth: 88 (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -49.23182 -3.478911 -2.882748 -2.578158 0.0001 *MacKinnon (1996) one-sided p-values Residual variance (no correction) HAC corrected variance (Bartlett kernel) 29.97554 0.900641 Null Hypothesis: TBRATE has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical 1% level Prob.* -1.415819 -3.478547 0.5729 46 values: 5% level 10% level -2.882590 -2.578074 Null Hypothesis: TBRATE has a unit root Exogenous: Constant Bandwidth: 10 (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -1.369695 0.5955 -3.478547 -2.882590 -2.578074 Null Hypothesis: D(TBRATE) has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* -9.836721 -3.478911 -2.882748 -2.578158 0.0000 *MacKinnon (1996) one-sided p-values Null Hypothesis: D(TBRATE) has a unit root Exogenous: Constant Bandwidth: 18 (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -10.25798 -3.478911 -2.882748 -2.578158 0.0000 *MacKinnon (1996) one-sided p-values Residual variance (no correction) 0.693432 47 HAC corrected variance (Bartlett kernel) 0.249395 Null Hypothesis: INTRATE has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic -3.147254 -3.479281 -2.882910 -2.578244 0.0255 Adj t-Stat Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* Prob.* -2.176555 -3.478547 -2.882590 -2.578074 0.2158 *MacKinnon (1996) one-sided p-values Null Hypothesis: INTRATE has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level *MacKinnon (1996) one-sided p-values Null Hypothesis: D(INTRATE) has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level *MacKinnon (1996) one-sided p-values Null Hypothesis: D(INTRATE) has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Prob.* -6.333971 -3.480425 -2.883408 -2.578510 0.0000 48 Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.889084 -3.478911 -2.882748 -2.578158 0.0000 *MacKinnon (1996) one-sided p-values Null Hypothesis: RDR has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* -0.483111 -3.478547 -2.882590 -2.578074 0.8898 Null Hypothesis: RDR has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -1.051886 -3.478547 -2.882590 -2.578074 0.7333 Null Hypothesis: D(RDR) has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Null Hypothesis: D(RDR) has a unit root Prob.* -9.960281 -3.478911 -2.882748 -2.578158 0.0000 49 Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat -10.07249 -3.478911 -2.882748 -2.578158 Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* 0.0000 -Granger Null Hypothesis: RESIDRT_TBRATE has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.729421 -3.478547 -2.882590 -2.578074 0.0000 Null Hypothesis: RESIDRT_TBRATE has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.525317 -3.478547 -2.882590 -2.578074 0.0000 Null Hypothesis: RESIDRT_INTRATE has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level Prob.* -7.557043 -3.478547 -2.882590 0.0000 50 10% level -2.578074 Null Hypothesis: RESIDRT_INTRATE has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.370633 -3.478547 -2.882590 -2.578074 0.0000 Null Hypothesis: RESIDRT_RDR has a unit root Exogenous: Constant Lag Length: (Automatic based on SIC, MAXLAG=13) t-Statistic Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.623285 -3.478547 -2.882590 -2.578074 0.0000 Null Hypothesis: RESIDRT_RDR has a unit root Exogenous: Constant Bandwidth: (Newey-West using Bartlett kernel) Adj t-Stat Phillips-Perron test statistic Test critical values: 1% level 5% level 10% level Prob.* -7.429694 -3.478547 -2.882590 -2.578074 0.0000 *MacKinnon (1996) one-sided p-values -Juselius Date: 12/14/12 Time: 14:35 Sample (adjusted): 2000M10 2011M12 Included observations: 135 after adjustments 51 Trend assumption: Linear deterministic trend (restricted) Series: RT INTRATE TBRATE Lags interval (in first differences): to Unrestricted Cointegration Rank Test (Trace) Hypothesized No of CE(s) Eigenvalue Trace Statistic 0.05 Critical Value Prob.** None * At most * At most 0.268210 0.141196 0.041423 68.41560 26.26022 5.711251 42.91525 25.87211 12.51798 0.0000 0.0447 0.4978 Trace test indicates cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized No of CE(s) Eigenvalue Max-Eigen Statistic 0.05 Critical Value Prob.** None * At most * At most 0.268210 0.141196 0.041423 42.15538 20.54897 5.711251 25.82321 19.38704 12.51798 0.0002 0.0338 0.4978 Max-eigenvalue test indicates cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Cointegrating Coefficients: RT -0.274401 -0.089217 7.17E-05 INTRATE -0.148626 0.454303 -0.406277 TBRATE -0.158513 0.054196 0.627910 @TREND(00M0 8) 0.011019 -0.026236 -0.012896 Unrestricted Adjustment Coefficients (alpha): D(RT) D(INTRATE) D(TBRATE) 2.310590 0.173447 0.041944 0.903649 -0.218128 -0.060281 -0.086964 0.015974 -0.147010 52 Cointegrating Equation(s): Log likelihood -678.7321 Normalized cointegrating coefficients (standard error in parentheses) @TREND(00M0 RT INTRATE TBRATE 8) 1.000000 0.541639 0.577671 -0.040157 (0.33511) (0.34035) (0.02101) Adjustment coefficients (standard error in parentheses) D(RT) -0.634028 (0.11033) D(INTRATE) -0.047594 (0.01588) D(TBRATE) -0.011509 (0.01810) Cointegrating Equation(s): Log likelihood -668.4576 Normalized cointegrating coefficients (standard error in parentheses) @TREND(00M0 RT INTRATE TBRATE 8) 1.000000 0.000000 0.463730 -0.008024 (0.29274) (0.01985) 0.000000 1.000000 0.210363 -0.059326 (0.24277) (0.01646) Adjustment coefficients (standard error in parentheses) D(RT) -0.714649 0.067115 (0.11369) (0.18833) D(INTRATE) -0.028133 -0.124875 (0.01573) (0.02607) D(TBRATE) -0.006131 -0.033620 (0.01896) (0.03142) Vector Error Correction Estimates Date: 12/14/12 Time: 20:32 Sample (adjusted): 2001M05 2011M12 Included observations: 128 after adjustments Standard errors in ( ) & t-statistics in [ ] Cointegrating Eq: CointEq1 CointEq2 53 RT(-1) 1.000000 0.000000 INTRATE(-1) 0.000000 1.000000 TBRATE(-1) 0.252848 (0.25447) [ 0.99363] -0.028255 (0.23689) [-0.11927] @TREND(00M07) -0.014451 (0.01623) [-0.89034] -0.047794 (0.01511) [-3.16305] C -0.887207 -7.819491 Error Correction: D(RT) D(INTRATE) D(TBRATE) CointEq1 -1.038884 (0.20559) [-5.05324] -0.022597 (0.02625) [-0.86096] 0.004766 (0.03376) [ 0.14118] CointEq2 -0.422008 (0.34291) [-1.23066] -0.135660 (0.04378) [-3.09880] -0.024487 (0.05631) [-0.43487] D(RT(-1)) 0.442068 (0.19160) [ 2.30721] 0.012972 (0.02446) [ 0.53031] 0.011568 (0.03146) [ 0.36766] D(RT(-2)) 0.350098 (0.17698) [ 1.97820] 0.003068 (0.02259) [ 0.13579] 0.007417 (0.02906) [ 0.25521] D(RT(-3)) 0.076565 (0.15881) [ 0.48213] 0.001231 (0.02027) [ 0.06072] -0.017378 (0.02608) [-0.66638] D(RT(-4)) 0.115528 (0.14373) [ 0.80381] -0.005340 (0.01835) [-0.29103] 0.020746 (0.02360) [ 0.87902] D(RT(-5)) 0.196165 (0.13653) [ 1.43680] -0.012356 (0.01743) [-0.70889] 0.000201 (0.02242) [ 0.00895] 54 D(RT(-6)) 0.089089 (0.12646) [ 0.70449] -0.013620 (0.01614) [-0.84367] -0.015565 (0.02077) [-0.74954] D(RT(-7)) 0.013073 (0.10962) [ 0.11925] -0.002677 (0.01399) [-0.19127] -0.004170 (0.01800) [-0.23166] D(RT(-8)) -0.060996 (0.09850) [-0.61922] 0.009000 (0.01258) [ 0.71565] 0.009632 (0.01618) [ 0.59549] D(RT(-9)) 0.208956 (0.08800) [ 2.37453] 0.006841 (0.01123) [ 0.60897] -0.020974 (0.01445) [-1.45147] D(INTRATE(-1)) -0.008128 (0.74527) [-0.01091] 0.194805 (0.09515) [ 2.04744] 0.071902 (0.12238) [ 0.58753] D(INTRATE(-2)) -0.958667 (0.75076) [-1.27694] 0.496360 (0.09585) [ 5.17874] 0.232165 (0.12328) [ 1.88320] D(INTRATE(-3)) 1.940675 (0.83157) [ 2.33376] 0.362123 (0.10616) [ 3.41102] 0.264958 (0.13655) [ 1.94034] D(INTRATE(-4)) 2.821363 (0.87229) [ 3.23444] 0.032554 (0.11136) [ 0.29233] -0.022238 (0.14324) [-0.15525] D(INTRATE(-5)) -0.552098 (0.86569) [-0.63775] -0.291730 (0.11052) [-2.63963] 0.350041 (0.14216) [ 2.46237] D(INTRATE(-6)) 0.377495 (0.89250) [ 0.42296] -0.122968 (0.11394) [-1.07921] -0.189212 (0.14656) [-1.29103] D(INTRATE(-7)) -0.589797 (0.80607) -0.129733 (0.10291) -0.206229 (0.13237) 55 [-0.73169] [-1.26067] [-1.55802] D(INTRATE(-8)) 0.084437 (0.81713) [ 0.10333] 0.249890 (0.10432) [ 2.39543] -0.109854 (0.13418) [-0.81870] D(INTRATE(-9)) 0.535467 (0.80082) [ 0.66865] 0.111113 (0.10224) [ 1.08681] -0.103765 (0.13150) [-0.78907] D(TBRATE(-1)) -2.084766 (0.61374) [-3.39685] 0.019492 (0.07835) [ 0.24878] 0.045369 (0.10078) [ 0.45017] D(TBRATE(-2)) -1.091141 (0.63944) [-1.70640] 0.143061 (0.08163) [ 1.75246] -0.122956 (0.10500) [-1.17097] D(TBRATE(-3)) 0.252423 (0.63915) [ 0.39493] -0.417067 (0.08160) [-5.11126] -0.293443 (0.10496) [-2.79588] D(TBRATE(-4)) -1.882122 (0.72503) [-2.59592] 0.079801 (0.09256) [ 0.86214] -0.130950 (0.11906) [-1.09989] D(TBRATE(-5)) -2.449647 (0.72426) [-3.38227] 0.285932 (0.09246) [ 3.09238] 0.116918 (0.11893) [ 0.98307] D(TBRATE(-6)) -0.288413 (0.71225) [-0.40493] 0.064754 (0.09093) [ 0.71213] -0.040854 (0.11696) [-0.34930] D(TBRATE(-7)) 0.946518 (0.67854) [ 1.39493] -0.125289 (0.08663) [-1.44631] 0.334504 (0.11142) [ 3.00208] D(TBRATE(-8)) -1.457825 (0.70979) [-2.05388] -0.109164 (0.09062) [-1.20469] 0.101164 (0.11656) [ 0.86795] D(TBRATE(-9)) -0.320108 -0.052860 0.028335 56 (0.68840) [-0.46500] C R-squared Adj R-squared Sum sq resids S.E equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D dependent (0.08789) [-0.60146] (0.11304) [ 0.25065] 0.195612 (0.37513) [ 0.52145] 0.012617 (0.04789) [ 0.26344] 0.038729 (0.06160) [ 0.62871] 0.611151 0.496083 1604.230 4.045948 5.311235 -343.4397 5.834996 6.503441 -0.086641 5.699555 0.659457 0.558685 26.14663 0.516529 6.544000 -79.97229 1.718317 2.386762 0.045859 0.777536 0.553118 0.420878 43.25844 0.664389 4.182667 -112.1945 2.221789 2.890234 0.051953 0.873046 Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion 1.906793 0.855760 -534.9034 9.889116 12.07270 Vector Error Correction Estimates Date: 12/14/12 Time: 15:28 Sample (adjusted): 2000M10 2011M12 Included observations: 135 after adjustments Standard errors in ( ) & t-statistics in [ ] Cointegrating Eq: CointEq1 CointEq2 RT(-1) 1.000000 0.000000 INTRATE(-1) 0.000000 1.000000 TBRATE(-1) 0.463730 (0.29390) [ 1.57783] 0.210363 (0.24374) [ 0.86308] @TREND(00M07) -0.008024 (0.01993) -0.059326 (0.01653) 57 [-0.40264] [-3.58977] C -3.136463 -8.828039 Error Correction: D(RT) D(INTRATE) D(TBRATE) CointEq1 -0.714649 (0.11414) [-6.26129] -0.028133 (0.01580) [-1.78099] -0.006131 (0.01904) [-0.32202] CointEq2 0.067115 (0.18908) [ 0.35496] -0.124875 (0.02617) [-4.77197] -0.033620 (0.03154) [-1.06589] D(RT(-1)) 0.162128 (0.10053) [ 1.61266] 0.016618 (0.01391) [ 1.19437] 0.017282 (0.01677) [ 1.03046] D(RT(-2)) 0.067377 (0.08568) [ 0.78639] 0.029649 (0.01186) [ 2.50036] 0.029579 (0.01429) [ 2.06950] D(INTRATE(-1)) 0.790785 (0.58064) [ 1.36192] 0.300018 (0.08036) [ 3.73344] 0.277306 (0.09686) [ 2.86298] D(INTRATE(-2)) 0.159726 (0.62506) [ 0.25554] 0.299400 (0.08651) [ 3.46098] 0.360278 (0.10427) [ 3.45526] D(TBRATE(-1)) -1.034376 (0.52718) [-1.96209] 0.073211 (0.07296) [ 1.00343] -0.009503 (0.08794) [-0.10807] D(TBRATE(-2)) -0.411796 (0.52858) [-0.77906] 0.040710 (0.07315) [ 0.55649] -0.078248 (0.08817) [-0.88742] C 0.009117 (0.39730) [ 0.02295] 0.008612 (0.05499) [ 0.15663] 0.031364 (0.06628) [ 0.47324] 0.369066 0.329006 0.348664 0.307309 0.235058 0.186490 R-squared Adj R-squared 58 Sum sq resids S.E equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D dependent 2661.640 4.596099 9.212975 -392.8027 5.952633 6.146318 -0.040593 5.610869 50.98125 0.636092 8.431071 -125.8241 1.997393 2.191078 0.037926 0.764276 Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion 4.935345 4.012619 -668.4576 10.42159 11.17481 74.06602 0.766698 4.839788 -151.0352 2.370893 2.564578 0.051852 0.850047 ... (2009) th nt nt i nhu n th ng ch n ch ng t ng Anh 17 2.2.5 uc 2.2.6 n uc 19 nh ng c t Nam .20 2.2.7 t k t qu u th c nghi m .21 U, CH N M U, THU TH LI U 22 3.1 3.2... i nhu n ti n t c n ph i th n tr n l yc av m n ph b tr s d ti ng ray ng bi us d u t i TTCK Vi t Nam a r i ro t lu n.T uc t, u th c nghi s 17 2.2.4 u c (2009) th nt i nhu n th ng ch n ch ng t ng... theo c gia c a m u i v i vi c ho yr c n tr ng vi c th c hi n TTCK 2.2.6 u c a Ngo (2009) ng c t Nam ng c c: (2.24) ng c c aM : (2.25) (2.26) (2.27) u s d ng d li u chu i th i gian t d , b ng uc

Ngày đăng: 08/08/2015, 17:20

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN