1. Trang chủ
  2. » Giáo án - Bài giảng

Duong thang vuong goc mat phang 32 33

29 329 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 1,1 MB

Nội dung

BÀI 3: ĐƯỜNG THẲNG VUÔNG GÓC BÀI 3: ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG VỚI MẶT PHẲNG a b c P a b M ĐƯỜNG THẲNG VUÔNG GÓC ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG VỚI MẶT PHẲNG I) ĐỊNH NGHĨA: I) ĐỊNH NGHĨA: II.ĐIỀU KIỆN ĐỂ ĐƯỜNG THẲNG VUÔNG GÓC II.ĐIỀU KIỆN ĐỂ ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG VỚI MẶT PHẲNG ĐỊNH LÝ ĐỊNH LÝ : : d (P) d a , a (P) ⊥ ⇔ ⊥ ∀ ⊂ d a d (P) d b a b=M a,b ( )P   ⊥   ⊥ ⇔ ⊥   ∩  ⊂   d a d b. Chứng minh rằng: BC ⊥ (SAB). c. Gọi H là hình chiếu của A lên SB. Chứng minh rằng AH ⊥ (SBC) Ví dụ 1:Cho hình chóp tam giác S.ABC có SA ⊥(ABC), ∆ABC vuông tại B. a. Chứng tỏ : ∆ SAB, ∆ SAC là các tam giác vuông. A B C S H A B C S H a. Chứng tỏ: ∆ SAB, ∆ SAC là các tam giác vuông       ( )SA ABC SA AC⊥ ⇒ ⊥ ⇒ b. Chứng minh rằng: BC ⊥ (SAB) BC ⊥ (SAB) BC ⊥ AB BC ⊥ SA ⇒ ∆ ABC vuông tại B SA ⊥ (ABC) ⇒ ⇒ c. Chứng minh rằng: AH ⊥ (SBC) AH ⊥ (SBC) ⇒ AH ⊥ SB AH ⊥ BC H là hình chiếu của A lên SB ⇒ ⇒ ∆ SAB vuông tại A ∆ SAC vuông tại A ( )SA ABC SA AB ⊥ ⇒ ⊥ ⇒ BC SAB⊥ ( ) AH SAB⊂( ) Ví dụ 2 : Cho ∆ ABC và đường thẳng a vuông góc với 2 cạnh AB , AC. Có kết luận gì giữa a và cạnh BC ? HỆ QUẢ HỆ QUẢ : :Nếu một đường thẳng vuông góc với 2 cạnh của một tam giác thì vuông góc với cạnh còn lại. A B C a S A B C I VD: Cho chóp S.ABC có SA=SB=SC VD: Cho chóp S.ABC có SA=SB=SC và. và. CMR: CMR: · · · ASB SC ASCB = = SA BC ⊥ A C S B I Tính chất 1: III. Các tính chất: Tính chất 2: P a P O O Có duy nhất một mặt phẳng (P) đi qua điểm O cho trước và vuông góc với đường thẳng a cho trước Có duy nhất một đường thẳng a đi qua điểm O cho trước và vuông góc với mặt phẳng (P) cho trước a

Ngày đăng: 27/05/2015, 02:00

TỪ KHÓA LIÊN QUAN

w