1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài thảo luận môn xác suất thống kê ước lượng điểm trung bình học phần của sinh viên đại học thương mại với môn kinh tế vĩ mô với độ tin cậy lên đến 95%

38 934 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 142,88 KB

Nội dung

NHÓM 5 BÀI THẢO LUẬN MÔN : Lý thuyết xác suất và thống kê toán. Lớp HP:1459AMAT0111 Giáo viên hướng dẫn: Vũ Trọng Nghĩa Dề tài thảo luận: “ Ước lượng điểm trung bình học phần của sinh viên đại học Thương Mại với môn Kinh Tế Vĩ Mô với độ tin cậy lên đến 95%. Có thể nói rằng có tỷ lệ sinh viên Đại Học Thương Mại phải thi lại môn Lý Thuyết Xác Suất và Thống Kê Toán là dưới 20% hay không? với mức ý nghĩa 1%” 1 PHẦN MỞ ĐẦU  !"#$%&' (&)*+,-./# #0 /,123/4* 567/")##89/:- ;<&&=($$9%;>1<&'-!< 1)-#)0</;0?#$',@*** "0A3/; *+B/7)9+= C DEFGH0&IJ!6,;>1< 7!$KFG;)11;1!* L!,$9M9N;1=)<8; 2&I$$0)&:-; 76A0 ,<B:-;D')'2>181O<N'PQ R9-# 9$;") ;S7T;J<  #09)*+--&>#UVH? 7)N$1>0P7W*XP;1=<89/ 1YYY<9-;1)08?T <& 1):-;*4&9)H<>#&87>.&I :-;2 U3#0 ;!1QI1Z0<[6< 6N,9)#7UL6 $7>:-;M  \M]Z/]Z9^&.7 1)-&I&Z'69)  !&I,;") _;>1* 2 4>#/`1)1#`;>10 &I"*4!a0.b cdZ&I29 ;1`0-;+&'V-Z X+$3]VZ>#0$eaG* L!2!f!g/0:-h;+&'V-1)-i? +#$jA+X0+&ZkFG#7UZ.?]lGm* 3Z6b ndZ&I27$]0-;+&'V-< o8&p272)%<)$272=2 n5$&I20[&OT! l1&' 11;>1/")1QI1/\&`0* Nội dung đề tài bao gồm: n V[` n L&'lbL'[?#$ nL&'kb)9>1 qL;p/ qdZ&I%9  qX2% L&'EbV[* Chương 1:CƠ SỞ LÝ THUYẾT 3 1. Ước lượng kì vọng toán của đại lượng ngẫu nhiên jWl-&Ip0j0l!*L8&j &I;<7?/rstuvsjw< k σ u3sjw<1uxsyw<zw2<9$1)9 </!S817!7N>67,/&I&Z -8!9%1##" * L6 >#<S&Z&Ir9f;{usj l <j k <z<j  wT!# ,pr|* },r|2&Z&Ir&I1b 1.1. dZ&I7~;-&Ip0* 1.1.1. Trường hợp X~ N (µ, σ 2 ) với σ đã biết: +T;p{usj l <j k <z<j  w#,b }j•4st<€ k wu••4s‚<wu•ƒusn‚w„s€…w•4sF<lw • Khoảng tin cậy đối xứng }ƒ•4sF<lw0Z†sF‡lw&Z79W9\ &I%1 %Jbxsˆƒˆ‰wulŠ†u‹ A#xsˆn‚ˆ‰wulŠ†u‹ :8Œu#xsnŒ‰‚‰qŒwulŠ†u‹ u•7)>#.tsnŒ<qŒw<!Œus[9)•w* +&',&0!b • Khoảng tin cậy phải (để ước lượng giá trị tối thiểu) của μ là: 4 sn<qŽw %&Z&I2‚bn • Khoảng tin cậy trái (để ước lượng giá trị tối đa) của μ là: snŽ<qw %&Z&I‚q 1.1.2. Trường hợp chưa biết quy luật phân phối của X nhưng kích thước mẫu n khá lớn. (n≥30) }•EFu••4s‚<€ k „wu•ƒusƒusn‚w„s€…w•4sF<lw* +&',Zl<!b • X)>#.‚snŒ<qŒw<! Œu 4$€&9$< •EF0Q&Z&I2€•s‘w`; p* • X)>#1)‚sn<qŽw%&Z&I2‚n • X)>#‚snŽ<qw %&Z&I‚q 1.1.3. Trường hợp X ~ N (µ, σ 2 ), σ chưa biết và n < 30 X!+usn‚w„sA‘„w•+ snlw !Z†sF‡lw&Z79W9\  &I%1%B • Khoảng tin cậy đối xứng. }+•+ snlw 0Z†sF‡lw&Z79W9\ &I%1% Jb xsˆ+ˆ‰wulŠ†u‹ u•xsˆn‚ˆ‰wulŠ†u‹ :8Œu %&Z&I2‚n • Khoảng tin cậy trái (để ước lượng giá trị tối đa) của µ. 5 snŽ<qw %&Z&I‚q 1.2. dZ&Ig/* 1.3. dZ&I1&'-&Ip011B"#> ’* 2. Kiểm định giả thiết thống kê 2.1. Các khái niệm cơ bản. qV;)#$!<8"#>11<86 >1:i44&I;)#$70<76/h F s8hw* + V;)#$7Z)#$h F &I;)#$>1<76/ h l s8w* + h F h l >181)#$70*+"#%b7;81 )#$h F <h l  $99Jh F S1>h l * L/$B"#_#!2Tp21W1 "#$%1>h F #99Jh F &I;/72%* 2.2. Kiểm định giả thuyết về tỷ lệ của đám đông. jWl!g/1`o/y1<!1&9$*+Tl '[!& &I1u1  &#*3Z.?]† `72%)$bh  b1u1  *;“D/1`o/y0pp 076&Z*4&9$776&ZZ “!111D ’b “4s1‡w j#,0’72%b ƒu +!" F uln1  4$h  R ƒ4sF<lw* jWH92b n 5lb 3Z&Z<!2 &I †„k xsˆƒˆ• †„k wu† 6 +B#0?J!99Jb{ † u  bˆ  ˆ• †„k ” +!u 4$ ∉ tn U α w b99Jh l <1>h F 4$ƒ  ∈  α w b 99Jh F <1>h l n 5kb 3Z&Z<!2 &I α U  ( ) α α =>UUP +B#0?J!99J{ † u  b  • † ” +!u 4$ ∉ tn U α w b99Jh l <1>h F 4$ƒ  ∈  α w b 99Jh F <1>h l n 5Eb 3Z&Z<!2 &I α U  ( ) α α =−< UUP +B#0?J!99J{ † u  b  ‰n † ” +!u 4$ ∉ tn U α w b99Jh l <1>h F 4$ƒ  ∈  α w b 99Jh F <1>h l 7 8 Chương 2: GIẢI BÀI TOÁN 1. Bài toán ước lượng điểm trung bình môn kinh tế vĩ mô 1.1. Chọn mẫu và điều tra số liệu L;p/b n L;p2&Z&I29 7$] +T90&:-h;+&'V-<!a; pZ76&ZukFF9M07!7T7!•• $7!•e* 4!ao1&'11>1/b n+,$1>1/27$]9-QZ1;1`< Z1;6* n+>1/TN1P7* A711&'11>1/&0<!a&I7$ ")/pMkFF0-;+&'V-& A ++ h–3—+˜4 V™ A3 išx :2   9  X+3V l 4#@+%+. lE} k•Fl›K X•eX E ›<K k 4#@+%4 lE} k•FEeF X•eX K K<• E +`+%i0 lE} k•FlK• X•eX E •<E 9 • x-+%+ lE} k•Fl•e X•eX E K<e a i0+%X4 lE} k•Fk•l X•eX k K<› K 4#@+V# lE} k•FlFF X•eX k K • +`}#X lE} k•FFEE X•eX • • › V3NV- lE} k•FlKe X•eX E a e 3\3Nœ lE} k•Fk•• X•eX • K l F :(+%+ lE} k•Fl›E X•eX E K<E l l :+%h lE} k•FlaE X•eX E K<e l k x-  +  + œ~ lE} k•Fl•• X•eX E K<e l E :+%h# lE} k•Fla› X•eX E ›<l l • 4#@+%i? lE} k•FlK• X•eX E •<E l a }/1h&'+) lE} k•F•FK X•eX K • l K i0+%+#$V lE} lFFEFa X•ey a ›<k l • 4#@+%hM lE} k•Fkk• X•eX • e<k l › 4#@  œ~ i@ lE} k•FkEa X•eX • K<• l e 4#@+hf lE} k•Fkkk X•eX • •<k k F i0+%+0+ lE} k•Fkae X•eX • › k l 4#@+%+ lE} k•FkaE X•eX • ›<• k k :+%+) lE} k•F•Fa X•eX K •<› k 4#@+%œ~ lE} X•eX •<a 10 [...]... Giải bài toán ước lượng giá trị trung bình - Gọi: X là điểm môn kinh tế vĩ mô của sinh viên đại học Thương Mại µ= E(X) là điểm trung bình môn kinh tế vĩ mô của sinh viên đại học Thương Mại trên đám đông X là điểm trung bình môn kinh tế vĩ mô của sinh viên đại học Thương Mại trên mẫu - Ước lượng giá trị trung bình Do  σ2 n = 200 > 30 ⇒ X ~ N  µ ; −  n      21 ⇒U = X −µ ~ − N ( 0;1) σ n Nên với độ. .. Khoảng tin cậy đối xứng của µ là: ( 7,29 − 0,1407;7,29 + 0,1407) Hay (7,1493 ;7,4307) Vậy với độ tin cậy là 95%, ta có thể nói rằng điểm trung bình môn kinh tế vĩ mô của sinh viên đại học Thương Mại trong khoảng từ 7,1493 đến 7,4307 2 Bài toán kiểm định giả thuyết về tỷ lệ của đám đông Chọn mẫu, điều tra số liệu và xử lý số liệu 2.1 Điều tra tương tự phần ước lượng điểm trung bình môn kinh tế vĩ mô, ta... 2.2 - Giải bài toán kiểm định về tỷ lệ Gọi p là tỉ lệ sinh viên đại học Thương Mại phải thi lại môn lý thuyết xác suất và - thống kê toán trên đám đông Gọi f là tỉ lệ sinh viên đại học Thương mại phải thi lại môn lý thuyết xác suất và thống kê toán trên mẫu n=200 đủ lớn f N(p;) - Với mức ý nghĩa α = 0,01, ta đi kiểm định: - Xây dựng tiêu chuẩn kiểm định: U= - Nếu giả thuyết đúng thì U N (0;1) Với α =... 100236 13D 100042 K49A 7 K49A 7,5 4 3 Xử lý số liệu: Sau khi thu thập đầy đủ số liệu của 200 sinh viên và xử lý số liệu nhóm 5 thu 1.2 được kết quả như sau: Bảng phân phối tần số thực nghiệm: Điể 9 41 6 9 viên Tấn 3 18 50 82 số Ta có: Điểm trung bình môn kinh tế vĩ mô của sinh viên đại học Thương Mại trên mẫu là: − x= = 1 k ∑ ni x i n i =1 1 (4,5 ⋅ 3 + 5,5 ⋅ 18 + 6,5 ⋅ 50 + 7,5... U< - ) = α Theo nguyên lý xác suất nhỏ ta có miền bác bỏ: Wα = {utn : utn . học Thương Mại với môn Kinh Tế Vĩ Mô với độ tin cậy lên đến 95%. Có thể nói rằng có tỷ lệ sinh viên Đại Học Thương Mại phải thi lại môn Lý Thuyết Xác Suất và Thống Kê Toán là dưới 20% hay không? với. 5 BÀI THẢO LUẬN MÔN : Lý thuyết xác suất và thống kê toán. Lớp HP:1459AMAT0111 Giáo viên hướng dẫn: Vũ Trọng Nghĩa Dề tài thảo luận: “ Ước lượng điểm trung bình học phần của sinh viên đại học Thương. UUP +B#0?J!99J{ † u  b  ‰n † ” +!u 4$ ∉ tn U α w b99Jh l <1>h F 4$ƒ  ∈  α w b 99Jh F <1>h l 7 8 Chương 2: GIẢI BÀI TOÁN 1. Bài toán ước lượng điểm trung bình môn kinh tế vĩ mô 1.1. Chọn mẫu và điều tra số liệu L;p/b n

Ngày đăng: 21/05/2015, 20:44

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w