1. Trang chủ
  2. » Giáo Dục - Đào Tạo

9 phương pháp giải phương trình mũ và phương trình lôgarit_tài liệu học tập môn toán lớp 12

13 887 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

O0O Phƣơng pháp 1: GIẢI PHƢƠNG TRÌNH CƠ BẢN a f ( x )  b  f ( x)  log a b ; log a f ( x)  b  f ( x)  ab Ví dụ Giải phƣơng trình: a) 3x 5 x   81 ; b) log (3x  4)  Giải: a) 3x 5 x   81  x2  5x   log3 81  x2  x   log3 34 x   x2  5x    x2  5x   x( x  5)    x  Vậy phương trình cho có hai nghiệm x = x = b) log (3x  4)  log (3x  4)   l3x   23  3x    3x  12  x  ĐK: 3x    x  Vậy phương trình cho có nghiệm x = Page Phƣơng pháp 2: ĐƢA VỀ CÙNG CƠ SỐ 1) Đối với phương trình mũ: biến đổi phương trình dạng a f ( x )  a g ( x ) - Nếu số a số dương khác a f ( x )  a g ( x )  f ( x)  g ( x) a  - Nếu số a thay đổi a f ( x )  a g ( x )   (a  1)  f ( x)  g ( x)    2) Đối với phương trình logarit: biến đổi phương trình dạng 0  a   loga f ( x)  log a g ( x)   f ( x)    f ( x)  g ( x) Ví dụ Giải phƣơng trình: a) 3x 5 x   81 ; b) log (3x  4)  Giải:  81  3x 5 x4  34  x2  5x   x   x2  5x   x( x  5)    x  a) 3x 5 x  Vậy phương trình cho có hai nghiệm x = x = b) ĐK: 3x    x  log (3x  4)   log (3x  4)  log 23  3x   23  3x    3x  12  x  Vậy phương trình cho có nghiệm x = Page Ví dụ Giải phƣơng trình: a) 3x  x 8 c) 2.5x  913 x 3 ;  5.2 x ; 3 b) 2x1  2x1  2x  28 d) 2x 1  3x  3x 2 1  2x 2 Giải: a) 3x  x 8  913 x  3x  x 8  32(13 x )  x2  x   2(1  3x)  x  2  x2  5x      x  3 Vậy phương trình cho có hai nghiệm x = - x = - b) 2x1  2x1  2x  28  22.2 x1  x1  2.2x1  28  x1 (22   2)  28  2x1   2x1  22  x    x  Vậy phương trình cho có nghiệm x = c) 2.5 x 3  5.2 x 3 5x  3 3 2x 5    2 x 3 5   2  x2    x2   x  2 Vậy phương trình cho có hai nghiệm x = - x = d) 2x  2x 1 1  3x  3x 1  2x 2  2x 1  3.3x 1  3x 1  23.2x 1 2  23.2 x 1  3x 1  3.3x 2  x 1.9  3x 1.4    3 2 x 1 1 2  x 1 (1  23 )  3x 1 (1  3) 2    3 x 1 2     x2   3  x2   x   Vậy phương trình cho có hai nghiệm x = - x = Page Ví dụ Giải phƣơng trình: a) lg x  lg x  lg x ; b) log x  log3 x  log x  log5 x Giải: b) ĐK: x  lg x  lg x2  lg x  lg x  2lg x  lg  lg x  2lg x  lg x   2lg x  lg 22  lg x  lg  x    x  2  Do x  nên nghiệm phương trình x  b) ĐK: x  log2 x  log3 x  log4 x  log5 x  log2 x  log3 2.log2 x  log4 2.log x  log5 2.log x  log2 x.(1  log3  log  log5 2)   log2 x   x  Vậy phương trình cho có nghiệm x = Phƣơng pháp 3: BIẾN ĐỔI ĐƢA VỀ PHƢƠNG TRÌNH TÍCH Ví dụ Giải phƣơng trình: a) 12.3x  3.15x  5x1  20 ; b) log2 (3x  4).log2 x  log2 x Giải: a) 12.3x  3.15x  5x1  20  12.3x  3.3x.5x  5.5x  20   3.3x (4  5x )  5(5x  4)   (5x  4)(3.3x  5)  5 x   5  x  3x   x  log3    3 3.3   Page 5 Vậy phương trình cho có nghiệm x  log   3 3x   b) ĐK:  x x  log (3x  4).log x  log x  log x log (3x  4)  1  log x  log x  x 1 x 1     x  log (3x  4)   log (3x  4)  3x   Do x  nên nghiệm phương trình x  Phƣơng pháp 4: LƠGARIT HĨA, MŨ HĨA Ví dụ Giải phƣơng trình: a) 3x.2 x  b) 3log2 x  x  ; Giải: a) Lấy lô garit hai vế với số 2, ta   log 3x.2 x  log  log 3x  log 2 x   x.log  x log 2  2 x  x   x.log  x   x  log  x      log  x   x   log Vậy phương trình cho có hai nghiệm x = x =  log b) ĐK: x  Đặt log x  t  x  2t ta thu phương trình mũ theo biến t : Page 3t  2t  (*) Vế trái (*) hàm số đồng biến, vế phải hàm nên phương trình (*) có nghiệm có nhiều nghiệm Mà t  nghiệm (*) nên nghiệm (*)  log x   x  Vậy phương trình cho có nghiệm x = Phƣơng pháp 5: DÙNG ẨN PHỤ Ví dụ Giải phƣơng trình: 22x 9.2x Giải: Chia vế phương trình cho 22x 22x 2x 9.2x 2x 9.2x 2.22x 2x Đặt t 2t 2 x 2x 2 x 4 2x 2 22x 0 ta được: 2x x2 x 0 điều kiện t > Khi phương trình tương đương với : t 9t x t 2x x 2x x 22 x2 x x2 x x x Vậy phương trình có nghiệm x = - 1, x = Page Ví dụ Giải phƣơng trình: x 2 ; Giải: Nhận xét rằng: Do đặt t điều kiện t > 0, thì: 2 x x 3 x t x t2 Khi phương trình tương đương với: t2 t t3 t 2t t x t2 t x t t2 t Vậy phương trình có nghiệm x = Ví dụ Giải phƣơng trình: 32x 3x 9.2x 3x , điều kiện t > Khi phương trình tương đương với: Giải: Đặt t 2x t 2x t2 2x 9.2x 4.9.2x 2x t t 2x Khi : + Với t + Với t x 3x x x x 2 x x Vậy phương trình có nghiệm x = 2, x = Page Ví dụ Giải phƣơng trình: 22x 2x 6 Giải: Đặt u 2x , điều kiện u > Khi phương trình thành: u Đặt v 6, điều kiện v u v2 u u 6 Khi phương trình chuyển thành hệ: u2 v v2 u u2 v2 + Với u = v ta được: u u u v u u v u v u u u v u v 2x x log2 + Với u + v + = ta : u2 u u u 21 21 u 21 2x 21 x log2 21 2 Vậy phương trình có nghiệm x log2 x = log2 21 Phƣơng pháp 6: DÙNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Ví dụ Giải phƣơng trình: log7 x  log3 ( x  2) Giải: ĐK : x  Đặt t = log7 x  x  7t Khi phương trình trở thành : Page t  7 t  log3 (  2)       2.   (*) 3      t t t t Vế trái (*) hàm số nghịch biến, vế phải hàm nên phương trình (*) có nghiệm có nhiều nghiệm Mà t  nghiệm (*) nên nghiệm (*)  log7 x   x  49 Vậy phương trình có nghiệm x = 49 Ví dụ Giải phƣơng trình: x1  6log7 (6 x  5)  Giải: ĐK : x    x  Đặt y   log  x  5 Khi đó, ta có hệ phương trình 7 x 1   y  1  7 x 1  y  7 x 1  y  5    y 1   y 1  x1  x  y 1  y   y   log  x  5 7  x  7  x  5  Xét hàm số f  t   7t 1  6t f '  t   7t 1.ln   0,t  đồng biến 5   ;     nên f  t  hàm số Mà f  x   f  y   x  y Khi đó: x1  x   Xét hàm số g x  x1  x  g '  x   x1 ln  g ''  x   x1  ln 7  Suy ra, 5  g '  x  hàm số đồng biến D   ;   , phương trình g '  x   có 6  nhiều nghiệm Suy ra, phương trình g  x   có nghiệm có nhiều hai nghiệm Nhẩm nghiệm ta nghiệm phương trình là: x = 1, x = Sài Gịn, 10/2013 Page Ví dụ Giải phƣơng trình: 3x  x   x (*) Giải: Vế trái (*) hàm số đồng biến, vế phải (*) hàm số nghịch biến nên phương trình (*) có nghiệm có nhiều nghiệm Mà x  nghiệm (*) nên nghiệm (*) Phƣơng pháp 7: PHƢƠNG PHÁP ĐÁNH GIÁ Ví dụ Giải phƣơng trình: x 1 2 x Giải: ĐK : x  Ta có VT  x 1  201  VP   x    Suy VT  VP , dấu xảy x  Vậy x  nghiệm phương trình cho Ví dụ Giải phƣơng trình:  x  x1  x  2 x Giải: Ta có  x  x1  x  2 x   (4 x  2.2 x  1)  x  2 x   (2 x  1)2  x  2 x VT   (2 x  1)2    VP  x  2 x  2 x.2 x  Suy VT  VP , dấu  2x   xảy  x  x  x 2  Page 10 Vậy x  nghiệm phương trình cho     Ví dụ Giải phƣơng trình: log3  x   log x  x  Giải: x 1 x  x 1       ĐK : 9  x    9  x 1   x  82  x  1;82     2 x  2x    x  1    x 1     Ta có :   VT  log3  x   log3    VP  log x  x   log  x  1  4  log  Suy   xảy VT  VP , dấu  x 1    x     x  1   Vậy x  nghiệm phương trình cho Phƣơng pháp 8: PHƢƠNG PHÁP QUAN NIỆM HẰNG SỐ LÀ ẨN Ví dụ Giải phƣơng trình: 16x  4x1  2x2  16 Giải: Ta có 16x  4x1  2x2  16  42  2x.4  4x1  16x  (*) Xét phương trình ẩn t sau t  2x t  4x1  16x  (**) Giả sử (*) với giá trị x0 phương trình ẩn t sau có nghiệm t = 4: t  2x0 t  4x0 1  16x0  Page 11 Biệt thức Suy TH1:    2 x0 t 4 4 x0   4 4x 1 16x   4.16x 2 x0  4.16 x0  4.16 x0 ; 0 x0  4.16 x0 t 4    x0  2.4 x0   2 x0  x 1  65 ( n) 2  x0   8    x 1  65 (l ) 2    1  65  x0  log       TH2: 4   2 x0  4.16 x0  x0  2.4 x0   2 x0  x0   Vậy phương trình cho có nghiệm (pt vơ nghiệm)  1  65  x  log       Phƣơng pháp 9: SỬ DỤNG ĐỊNH LÍ LAGRANGE Ví dụ Giải phƣơng trình: 5x  x  x  x (1) Giải: Giả sử x0 nghiệm (1), hay ta có: 5x0  4x0  2x0  x0  5x0  2x0  x0  4x0 (*) Xét hàm số f (t )   t  3  t x0 đoạn  2;4 x f (t ) hàm số liên tục có đạo hàm đoạn  2;4  Áp dụng định lí lagrange có số k   2;4  cho Page 12     x0  x0  x0  x0 f (4)  f (2) f '(k )   0 42 42  x0  t  3  x0 1 (do (*)) mà f '(t )  x0  t  3 x0 1  x0t x0 1  t x0 1   Suy x0  k  3  x0 1  x0   x0   k x0 1      x0 1 x0 1 x 1   k x0 1  k    k   k      x0   x0   x0     k   x0 1   x0   x0  1    k    Thay x  0; x  vào (1) ta thấy chúng thỏa mãn Vậy phương trình cho có hai nghiệm x  0; x  Page 13 ... (*)  log x   x  Vậy phương trình cho có nghiệm x = Phƣơng pháp 5: DÙNG ẨN PHỤ Ví dụ Giải phƣơng trình: 22x 9. 2x Giải: Chia vế phương trình cho 22x 22x 2x 9. 2x 2x 9. 2x 2.22x 2x Đặt t 2t 2... Khi phương trình tương đương với: t2 t t3 t 2t t x t2 t x t t2 t Vậy phương trình có nghiệm x = Ví dụ Giải phƣơng trình: 32x 3x 9. 2x 3x , điều kiện t > Khi phương trình tương đương với: Giải: ... t2 2x 9. 2x 4 .9. 2x 2x t t 2x Khi : + Với t + Với t x 3x x x x 2 x x Vậy phương trình có nghiệm x = 2, x = Page Ví dụ Giải phƣơng trình: 22x 2x 6 Giải: Đặt u 2x , điều kiện u > Khi phương trình

Ngày đăng: 09/02/2015, 21:01

Xem thêm: 9 phương pháp giải phương trình mũ và phương trình lôgarit_tài liệu học tập môn toán lớp 12

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w