×nh l¨ng trô: 1. Cho l¨ng trô tam gi¸c ®Òu ABC.A’B’C’ c¹nh ®¸y a, gãc cña AB’ víi mp (BCC’B’) b»ng . Chøng minh S xq cña l¨ng trô b»ng sin 3 sin sin 2 3 2 a . 2. Cho l¨ng trô ®øng OAB.O’A’B’ víi AOB lµ tam gi¸c vu«ng c©n t¹i O cã BA = a, mÆt bªn ABB’A’ lµ h×nh vu«ng. a) TÝnh S xq vµ V cña l¨ng trô. b) Gäi I lµ trung ®iÓm AB, lµ mÆt ph¼ng qua I, vu«ng gãc víi AB’. X¸c ®Þnh thiÕt diÖn cña víi l¨ng trô vµ tÝnh diÖn tÝch cña thiÕt diÖn nµy. c) TÝnh tØ sè thÓ tÝch chia l¨ng trô. 3. Cho l¨ng trô tam gi¸c ®Òu ABC.A’B’C’ cã c¹nh AB = a, AA’ = h. Gäi I lµ trung ®iÓm cña AB, J lµ h×nh chiÕu cña I trªn AC. a) X¸c ®Þnh thiÕt diÖn cña l¨ng trô voÐi mp (IJC’). b) TÝnh diÖn tÝch thiÕt diÖn nµy. 4. Cho l¨ng trô tam gi¸c ®Òu ABC.A’B’C’ cã c¹nh ®¸y vµ c¹nh bªn ®Òu b»ng a. Gäi M, N, E lÇn lît lµ trung ®iÓm cña BC, CC’, C’A’. a) Dùng thiÕt diÖn cña mp (MNE) víi l¨ng trô. Chøng minh c¸c mp (MNE), (AA’B’B) vu«ng gãc víi nhau. b) TÝnh diÖn tÝch thiÕt diÖn. 5. Cho l¨ng trô tam gi¸c ®Òu ABC.A’B’C’ c¹nh ®¸y a. b¸n kÝnh ®êng trßn ngo¹i tiÕp 1 mÆt bªn lµ a. a) TÝnh V, S xq cña l¨ng trô. b) X¸c ®Þnh t©m vµ b¸n kÝnh mÆt cÇu ngo¹i tiÕp l¨ng trô. 6. ChiÒu cao cña 1 l¨ng trô tø gi¸c ®Òu lµ h. Tõ 1 ®Ønh ta vÏ 2 ®êng chÐo cña 2 mÆt bªn kÒ nhau, gãc cña 2 ®êng chÐo Êy b»ng . a) Chøng minh gãc BCA = gãc B’CB vµ tÝnh V l¨ng trô. b) TÝnh diÖn tÝch thiÕt diÖn t¹o nªn do mp (ACB’) c¾t l¨ng trô. L¨ng trô xiªn: 7. Cho l¨ng trô xiªn ABC.A’B’C’ cã ®¸y lµ tam gi¸c ®Òu c¹nh a. H×nh chiÕu cña A’ xuèng mp (ABC) lµ t©m O cña ®êng trßn ngo¹i tiÕp tam gi¸c ABC vµ gãc BAA’ = 45 0 . a) TÝnh V l¨ng trô. b) Chøng minh BCC’B’ lµ hcn. c) TÝnh S xq cña l¨ng trô. 8. Cho l¨ng trô xiªn ABC.A’B’C’ cã ®¸y lµ tam gi¸c ®Òu ABC cã t©m O. H×nh chiÕu cña C’ trªn (ABC) lµ O. TÝnh V cña l¨ng trô biÕt r»ng kc tõ O ®Õn CC’ lµ d vµ sè ®o nhÞ diÖn c¹nh CC’ lµ 2 . 9. Mét l¨ng trô xiªn ABC.A’B’C’ cã ®¸y lµ tam gi¸c ®Òu ABC c¹
Th vin ti liu trc tuyn min phớ - Ch kin thc http://chukienthuc.com Hình lăng trụ: 1. Cho lăng trụ tam giác đều ABC.ABC cạnh đáy a, góc của AB với mp (BCCB) bằng . Chứng minh S xq của lăng trụ bằng sin 3sin sin2 3 2 a . 2. Cho lăng trụ đứng OAB.OAB với AOB là tam giác vuông cân tại O có BA = a, mặt bên ABBA là hình vuông. a) Tính S xq và V của lăng trụ. b) Gọi I là trung điểm AB, là mặt phẳng qua I, vuông góc với AB. Xác định thiết diện của với lăng trụ và tính diện tích của thiết diện này. c) Tính tỉ số thể tích chia lăng trụ. 3. Cho lăng trụ tam giác đều ABC.ABC có cạnh AB = a, AA = h. Gọi I là trung điểm của AB, J là hình chiếu của I trên AC. a) Xác định thiết diện của lăng trụ voéi mp (IJC). b) Tính diện tích thiết diện này. 4. Cho lăng trụ tam giác đều ABC.ABC có cạnh đáy và cạnh bên đều bằng a. Gọi M, N, E lần lợt là trung điểm của BC, CC, CA. a) Dựng thiết diện của mp (MNE) với lăng trụ. Chứng minh các mp (MNE), (AABB) vuông góc với nhau. b) Tính diện tích thiết diện. 5. Cho lăng trụ tam giác đều ABC.ABC cạnh đáy a. bán kính đờng tròn ngoại tiếp 1 mặt bên là a. a) Tính V, S xq của lăng trụ. b) Xác định tâm và bán kính mặt cầu ngoại tiếp lăng trụ. 6. Chiều cao của 1 lăng trụ tứ giác đều là h. Từ 1 đỉnh ta vẽ 2 đờng chéo của 2 mặt bên kề nhau, góc của 2 đờng chéo ấy bằng . a) Chứng minh góc BCA = góc BCB và tính V lăng trụ. b) Tính diện tích thiết diện tạo nên do mp (ACB) cắt lăng trụ. Lăng trụ xiên: 7. Cho lăng trụ xiên ABC.ABC có đáy là tam giác đều cạnh a. Hình chiếu của A xuống mp (ABC) là tâm O của đờng tròn ngoại tiếp tam giác ABC và góc BAA = 45 0 . a) Tính V lăng trụ. b) Chứng minh BCCB là hcn. c) Tính S xq của lăng trụ. 8. Cho lăng trụ xiên ABC.ABC có đáy là tam giác đều ABC có tâm O. Hình chiếu của C trên (ABC) là O. Tính V của lăng trụ biết rằng k/c từ O đến CC là d và số đo nhị diện cạnh CC là 2 . 9. Một lăng trụ xiên ABC.ABC có đáy là tam giác đều ABC cạnh a, cạnh bên BB = a, hình chiếu của B xuống đáy ABC trùng với trung điểm I của cạnh AC. a) Tính góc hợp bởi cạnh bên với đáy lăng trụ. Tính V lăng trụ. b) Chứng minh mặt bên AACC là hcn. Th vin ti liu trc tuyn min phớ - Ch kin thc http://chukienthuc.com 10. Cho lăng trụ xiên ABC.ABC có đáy là tam giác đều ABC có tâm O. Hình chiếu của A trên (ABC) là O. Biết k/c từ O đến mặt bên ABBA là d, góc nhị diện cạnh AA là 2 . Chứng minh V lăng trụ đó bằng 22 3 cos43cos4 27 d Hình hộp, hình hộp chữ nhật, hình lập phơng: 11. Cho hình hộp ABCD.ABCD có 6 mặt là các hình thoi cạnh a, hình chiếu vuông góc H của A trên mp (ABCD) nằm trong hình thoi ABCD, các cạnh xuất phát từ A của hình hộp đôi một tạo với nhau góc a) Chứng minh H nằm trên đờng chéo AC. b) Tính diện tích các mặt chéo ACCA và BDDB. c) Tính V của hình hộp ABCD.ABCD 12. Cho hình lập phơng ABCD.ABCD a) Tính góc của mp (ABD) và mp (ABCD) b) Chứng minh AC (ABD) 13. Cho hình lập phơng ABCD.ABCD. Lấy điểm M trên cạnh BC, mp (MBD) cắt AD tại N. a) Chứng minh NBMD là hbh. b) Chứng minh MN CD c) Gọi H là h/c của A trên MN. Khi M chạy trên đoạn BC, tìm tập hợp điểm H. 14. Cho hình hộp chữ nhật ABCD.ABCD có đờng chéo là d. Biết CA hợp với các mp (ABCD), (ABBA) các góc a, b. Chứng minh V hình hộp là: V = )cos()cos(sinsin 3 d 15. Trong các hình hộp cn có cùng V, hình nào có diện tích toàn phần min. 16. Cho hình hộp ABCD.ABCD. Chứng minh: (BAC) // (ACD) và chia đ- ờng chéo BD thành 3 đoạn bằng nhau. 17. Chứng minh rằng trong một hình hộp, tổng bình phơng các đờng chéo bằng tổng bình phơng các cạnh. 18. Cho hình hộp ABCD.ABCD có đáy là hình thoi cạnh a, góc A = 60 0 . Chân đờng vuông góc hạ từ B xuống mp (ABCD) trùng với giao điểm các đờng chéo của đáy. Cho BB = a. a) Tính góc của cạnh bên và đáy b) Tính V và S xq của hình hộp. 19. Cho hình lập phơng ABCD.ABCD cạnh a. Gọi M là điểm trên cạnh AD và AM = x (0 < x < a). Mp (MAC) cắt CD tại N. Tứ giác MNCA là hình gì? Tính diện tích tứ giác đó theo a và x. 20. Trong tất cả các hình hộp cn có cùng diện tích toàn phần, hình nào có V max? 21. Cho hình lập phơng ABCD.ABCD cạnh a. a) Dựng và tính đoạn vuông góc chung của AA và BD b) Điểm M di động trên cạnh AA. Mp (MBD) cắt CC tại N. Tứ giác BMDN là hình gì? Xác định điểm M để diện tích tứ giác BMDN min. Tính Smin đó. Th vin ti liu trc tuyn min phớ - Ch kin thc http://chukienthuc.com 22. Cho hình hộp cn ABCD.ABCD có cạnh AB = a, AD = h. M, N lần lợt là 2 điểm trên 2 cạnh AB. BC. Mp (MDD) cắt AB tại M, mp (NDD) cắt BC tại N và các mp đó chia hình hộp thành 3 phần có V bằng nhau. a) Tính AM, CN theo a, b. b) Tính tỉ số V 2 khối đa diện DMNDMN và BMNBMN. c) Tìm hệ thức giữa a và b để các mp (DMM) và (NMM) vuông góc với nhau. 23. Cho lăng trụ tam giác đều ABC.ABC có cạnh đáy a, chiều cao h. Một mp a di động qua A cắt các cạnh bên BB, CC lần lợt tại K, L sao cho tam giác AKL vuông tại K. Tìm đk mà a, h phải thỏa để bài toán có nghĩa. Khi đó tìm max, min của diện tích thiết diện AKL. 24. Cho lăng trụ đứng ABCD.ABCD có đáy là hình thang cân, AB = 2a, CD = a và góc BAD = 60 0 . Trên các cạnh AA và BB lần lợt lấy các điểm M, N sao cho AM = 2x, BN = 2y. Trên các cạnh DD và CC lần lợt lấy các điểm P, Q sao cho DP = x, CQ = y. a) Chứng minh MP cắt NQ tại I trên mp (ABCD). b) MNPQ là hình gì? Tính các cạnh của tứ giác theo a, x, y. c) Tính y theo a và x để MNPQ là hình thang vuông tại M và P. Trong T.H này hãy tính cosin của góc giữa 2 mp ABCD và MNPQ theo a, x. 25. Cho lăng trụ tứ giác đều ABCD.ABCD cạnh đáy a, góc của 1 đchéo với đáy là 60 0 . a) Tính V và S xq của lăng trụ. b) Gọi M, N lần lợt là trung điểm của các cạnh BB và DD. Chứng minh MN, AC cắt nhau tại trung điểm của mỗi đoạn và MN AC. Suy ra hình dạng của thiết diện tạo bởi mp (CMN) và lăng trụ. Tính diện tích thiết diện. c) Tính góc của mp (CMN) và đáy. 26. Cho hình hộp ABCD.ABCD. Gọi O là trung điểm của đờng chéo AC. Tìm vị trí của 1 điểm M trong không gian sao cho tổng các bình phơng các k/c từ M đến các đỉnh của hình hộp min. 27. Cho hình hộp ABCD.ABCD có: AB = a, AD = b, AA = c và BD = AC = CA = 222 cba a) Chứng minh ABCD là hcn và ABCD. ABCD là hình hộp cn. b) Gọi a, b, c là 3 góc tạo bởi 1 đờng chéo và 3 mặt cùng qua 1 đỉnh thuộc 1 đ/chéo. Chứng minh: Sin 2 a + Sin 2 b + Sin 2 c = 1. 28. Cho hình lập phơng ABCD. ABCD có đờng chéo bằng a. a) Dựng và tính độ dài đoạn vuông góc chung của các đờng thẳng AC và DC' b) Gọi G là trọng tâm tam giác ACD. Mp (GAC) cắt hình lập phơng theo hình gì? Tính diện tích hình này. c) Điểm M di động trên cạnh BC. Tìm tập hợp hình chiếu vuông góc của A trên DM Th vin ti liu trc tuyn min phớ - Ch kin thc http://chukienthuc.com Hình chóp đều: 29. Cho hình chóp tam giác đều S.ABC có cạnh bên là a, góc ở đáy của mặt bên là a. Chứng minh V của hình chóp là: V = )30sin()30sin(cos 3 2 0023 a 30. Cho hình chóp tam giác đều có cạnh bên bằng b hợp với đáy 1 góc a. a) Tính V hình chóp. b) Tính S xq của hình chóp đó. 31. Cho hình chóp tứ giác đều S.ABCD có góc của đờng cao và mặt bên là a, trung đoạn có độ dài là d. Chứng minh S tp của hình chóp là: ) 24 (cossin8 22 d 32. Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng l, mặt bên hợp với đáy góc a a) Tính V của hình chóp b) Chứng minh rằng V 27 34 3 l . Với giá trị nào của a thì đẳng thức xảy ra? 33. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB bằng a. Gọi O là tâm của mặt đáy. a) Tính S xq của hình chóp b) Chứng minh chiều cao hình chóp bằng: 1cot 2 2 g a c) Xác định góc a để O là tâm mặt cầu ngoại tiếp hình chóp. 34. Một hình chóp tam giác đều có trung đoạn d, góc của mặt bên và đáy là a. Chứng minh rằng S tp của hình chóp là: 2 coscos36 22 d Hình chóp có 1 cạnh bên vuông góc đáy: 35. Cho hình chóp S.ABCD. Đáy ABCD là hcn có cạnh AB = a, cạnh bên SA vuông góc đáy; cạnh bên SC hợp đáy góc a và hợp với mặt bên 1 góc b. a) Chứng minh rằng 22 2 2 sincos a SC b) Tính V hình chóp S.ABCD 36. Cho hình chóp S.ABCD có 2 mặt bên SAB và SAD cùng vuông góc với đáy; SA = a, ABCD là hình thoi cạnh a có góc A = 120 0 . a) Chứng minh 2 tam giác SBC và SDC bằng nhau. b) Tính S xq của hình chóp S.ABCD c) Tính V hình chóp S.ABCD, từ đó suy ra k/c từ D đến mp (SBC ) 37. Cho hình chóp S.ABCD có đáy ABCD là hcn, chiều cao SA = h, 2 mặt bên SBC, SCD lần lợt tạo với đáy các góc a, b. Tính V hình chóp . 38. Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A, B là chân đờng cao của hình chóp. a) CMR 3 mặt bên của hình chóp là những tam giác vuông và SC 2 = SB 2 + BA 2 + AC 2 b) Biết SB = h, góc ASC = a và nhị diện cạnh AC là b. Tính V hình chóp theo h, a, b . Th vin ti liu trc tuyn min phớ - Ch kin thc http://chukienthuc.com 38. Cho tứ diện S.ABC với các mặt SAB, SBC, SCA vuông góc với nhau từng đôi một và có diện tích tơng ứng là 24a 2 , 30a 2 , 40a 2 . Hãy tính V tứ diện ấy. Hình chóp có mặt bên vuông góc đáy: 39. Cho hình chóp S.ABC có (SBC) vuông góc đáy, 2 mặt bên SAB, SAC cùng hợp đáy góc 45 0 ; đáy ABC là tam giác vuông cân tại A có AB = a. a) Chứng minh hình chiếu vuông góc của S lên mặt ABC là trung điểm của cạnh BC. b) Tính V của hình chóp S.ABC 40. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và vuông góc với đáy. a) Tính V hình chóp đó. b) Tính góc hợp bởi cạnh bên SC với mặt đáy của hình chóp. 41. Cho hình chóp S.ABCD có đáy là hình cn với AB = a, BC = b. Mặt bên SBC là tam giác vuông tại S và vuông góc với đáy. Biết góc SBC = a a) Tính V hình chóp b) Tính tổng diện tích các mặt bên SAB, SCD. Hình chóp cụt: 42. Cho hình chóp cụt tứ giác đều ABCD.ABCD có cạnh bên là l và hợp với đáy góc a, diện tích đáy lớn bằng 4 lần diện tích đáy nhỏ a) Tính V hình chóp cụt. b) Tính diện tích xung quanh hình chóp cụt đó 43. Cho biết diện tích 2 đáy của 1 hình chóp cụt là S 1 , S 2 . Tính diện tích của thiết diện trung bình (tức là thiết diện qua trung điểm của 1 cạnh bên và // với đáy). Hình nón: 44. Tính S tp hình nón có đờng sinh là l và đờng sinh hợp với đáy góc a 45. Gọi V, V 1 , V 2 là thể tích các vật thể tròn xoay tạo ra bởi 1 tam giác vuông khi quay quanh cạnh huyền và các cạnh góc vuông. Chứng minh rằng: 2 2 2 1 2 111 VV V . Tính V hình chóp cụt. b) Tính diện tích xung quanh hình chóp cụt đó 43. Cho biết diện tích 2 đáy của 1 hình chóp cụt là S 1 , S 2 . Tính diện tích của thiết diện trung bình (tức là thiết diện qua. V hình chóp b) Tính tổng diện tích các mặt bên SAB, SCD. Hình chóp cụt: 42. Cho hình chóp cụt tứ giác đều ABCD.ABCD có cạnh bên là l và hợp với đáy góc a, diện tích đáy lớn bằng 4 lần diện tích. điểm của mỗi đoạn và MN AC. Suy ra hình dạng của thiết diện tạo bởi mp (CMN) và lăng trụ. Tính diện tích thiết diện. c) Tính góc của mp (CMN) và đáy. 26. Cho hình hộp ABCD.ABCD. Gọi O là trung