Như chúng ta đã biết thực tiễn đời sống xã hội luôn luôn thay đổi và phát triển. Điều này khiến cho mục tiêu quản lí, đào tạo và bồi dưỡng của nhà trường phải được điều chỉnh một cách thích hợp, dẫn đến sự thay đổi tất yếu về nội dung và phương pháp dạy học ở Tiểu học nói chung và môn toán lớp 3 nói riêng.Với nội dung chương trình mang tính hệ thống hoá, khái quát hoá và bổ sung kiến thức về số học; đại lượng và đo đại lượng; hình học; yếu tố thống kê và giải toán.
Trang 1Tên đề tài:
DẠY CÁC ĐƠN VỊ ĐO ĐẠI LƯỢNG TRONG MÔN TOÁN LỚP 3
Tác giả: Đặng Thị Bích Hòa Đơn vị: Trường tiểu học Bồng Sơn
A MỞ ĐẦU
I.Đặt vấn đề:
1.Thực trạng của vấn đề đòi hỏi phải có giải pháp mới để giải quyết:
Như chúng ta đã biết thực tiễn đời sống xã hội luôn luôn thay đổi và phát triển Điều này khiến cho mục tiêu quản lí, đào tạo và bồi dưỡng của nhà trường phải được điều chỉnh một cách thích hợp, dẫn đến sự thay đổi tất yếu về nội dung và phương pháp dạy học ở Tiểu học nói chung và môn toán lớp 3 nói riêng.Với nội dung chương trình mang tính hệ thống hoá, khái quát hoá và bổ sung kiến thức về số học; đại lượng và đo đại lượng; hình học; yếu tố thống kê và giải toán Đặc biệt các đơn vị đo đại lượng ở toán 3 tiếp nối, củng cố và phát triển, mở rộng các đơn vị đo đại lượng của toán lớp 1,2 Từ kiến thức ban đầu về độ dài, khối lượng, thời gian, học sinh lớp 3 bước đầu làm quen với hệ thống đơn vị đo độ dài, mối quan hệ giữa một số đơn
vị đo độ dài thường gặp, biết sử dụng các dụng cụ đo độ dài để đo độ dài ; đo khối lượng với hai đơn vị đo thường gặp là ki-lô-gam và gam ; đo thời gian với những đơn
vị đo thường gặp là giờ, phút, ngày, tháng, năm Bên cạnh đó toán 3 còn đi sâu khai thác những yếu tố chi tiết, cụ thể về thời điểm, khoảng thời gian, sử dụng lịch và đồng hồ khi đo thời gian ; sử dụng tiền Việt Nam trong sinh hoạt hàng ngày Nếu như các đơn vị đo đại lượng ở lớp 1,2 được giới thiệu ở dạng biểu tượng thì ở lớp 3 đi sâu vào việc thực hành đo và ước lượng Các đơn vị đo đại lượng còn giúp học sinh từng bước phát triển tư duy, rèn luyện những phương pháp suy nghĩ và khả năng suy luận logic
Trang 2Xuất phát từ mục đích, yêu cầu của chương trình toán, từ nhận thức của học sinh tiểu học nói chung và của lớp tôi nói riêng, đa số các em khi làm các bài toán về đại lượng và đo đại lượng còn nhiều hạn chế Có nhiều nguyên nhân, trong đó vẫn là:
do đặc điểm tâm sinh lý lứa tuổi, các em thường vội vàng, hấp tấp, nên đôi khi chưa hiểu kĩ đề bài đã làm, dẫn đến kết quả nhiều khi còn bị sai, thiếu hoặc đúng nhưng chưa đủ Bên cạnh đó còn một nguyên nhân quan trọng là các em không tin tưởng vào bài của chính mình nên dẫn đến những sai sót giống nhau Thậm chí có khi đã làm bài đúng rồi nhưng lại bỏ đi Đây là do các em thiếu cơ sở lí luận, không tin tưởng vào mình… Từ tình hình thực tế này mà tôi chọn đề tài: “Dạy các đơn vị đo đại lượng trong môn toán lớp 3” để nghiên cứu tìm giải pháp và thực nghiệm đúc kết
và rút ra kinh nghiệm
2.Ý nghĩa và tác dụng của giải pháp mới:
- Khắc sâu mối quan hệ giữa các đơn vị đo của cùng một đại lượng
- Hình thành và rèn kĩ năng giải toán có liên quan đến đơn vị đo
- Từng bước hình thành và phát triển tư duy toán cho học sinh
- Làm cơ sở cho học sinh học toán ở các lớp trên
- Giáo dục tính cẩn thận, ý thức vận dụng vào thực tế của học sinh
3.Phạm vi nghiên cứu của đề tài:
- Chương trình toán lớp 3
- Các tình huống cụ thể trong cuộc sống phù hợp với tâm sinh lý và thế giới quan của học sinh lớp 3
II.Phương pháp tiến hành :
1 Cơ sở lý luận và thực tiễn có tính định hướng cho việc nghiên cứu, tìm giải pháp của đề tài:
1.1 Cơ sở lý luận:
Căn cứ vào chương trình chuẩn hiện nay do Bộ Giáo dục và Đào tạo ban hành
và chuẩn kiến thức kĩ năng cần đạt đối với môn toán lớp 3
Trang 3Tâm lý học của lứa tuổi học sinh tiểu học cần có yếu tố trực quan sinh động để
đi đến yếu tố trừu tượng cơ bản
Kết hợp các yếu tố nghe, nhìn, vận dụng thực hiện
1.2 Cơ sở thực tiễn
- Tình hình thực tế học tập các đơn vị đo đại lượng trong môn toán của học sinh còn nhiều hạn chế
- Kỹ năng đổi các đơn vị đo; đo và ước lượng còn lúng túng
- Khả năng nắm bắt các mối quan hệ trong bài toán có các đơn vị đo đại lượng còn lơ mơ,chưa có chiều sâu
2 Các biện pháp tiến hành, thời gian tạo ra giải pháp:
2.1.Các biện pháp tiến hành:
Trong quá trình giảng dạy, bản thân tôi đã áp dụng các biện pháp sau:
- Nghiên cứu, tham khảo tài liệu
- Tìm hiểu đối tượng học sinh
- Thực hành, phân tích kết quả
2.2 Thời gian tiến hành:
- Đề tài này được áp dụng trong các giờ dạy toán ở lớp 3A trường Tiểu học Bồng Sơn từ tháng 9/ 2010
B NỘI DUNG I.Mục tiêu :
Nhiệm vụ của đề tài:
- Giúp học sinh khắc phục dần những tồn tại của việc giải quyết các bài toán có nội dung liên quan đến các dơn vị đo đại lượng
- Nhằm giúp học sinh nắm được phương pháp làm bài toán nội dung liên quan đến các đơn vị đo đại lượng một cách chính xác, khoa học
- Một số bài học kinh nghiệm cần lưu ý khi thực hiện
Trang 4II Mô tả giải pháp của đề tài:
1 Thuyết minh tính mới:
Khi giải toán có các đơn vị đo đại lượng học sinh thường sai lầm về đơn vị tính Chẳng hạn thực hiện phép tính khi hai đại lượng có đơn vị tính khác nhau như tính diện tích hình chữ nhật có chiều dài có đơn vị đo là đề xi mét; chiều rộng là xăng
ti mét nhưng không đổi vế cùng đơn vị
Các đơn vị đo đại lượng ở lớp 3 yêu cầu thực hành đối với mỗi học sinh như sau: Nắm được tên gọi, kí hiệu, mối quan hệ giữa các đơn vị, để chuyển đổi đơn vị
đo, tính toán, Song việc thực hành làm toán có liên quan đến các đơn vị đo đại lượng học sinh còn nhiều hạn chế về việc lập kế hoạch giải, hạn chế về chuyển đổi đơn vị đo, do đó kết quả bài làm của các em chưa cao Sau khi làm xong các em chưa thành thạo trong việc kiểm tra kết quả bài làm
1.1.Những biện pháp và giải pháp chung:
Giáo viên hướng dẫn cho học sinh nắm được tên gọi, kí hiệu của các đơn vị đo đại lượng
Giáo viên giúp cho học sinh nắm được quan hệ giữa các đơn vị đo đại lượng,
có thể kết hợp hình ảnh trực quan
Tuỳ theo tình hình thực tế của lớp, giáo viên có thể thông qua việc giải toán để khắc sâu các đơn vị đo của các đại lượng có liên quan
1.2 Những biện pháp và giải pháp cụ thể áp dụng có hiệu quả khi dạy các đơn vị đo đại lượng trong chương trình Toán lớp 3:
1.2.1.Dạy học về độ dài:
Dạy các đơn vị Đề-ca-mét ; Héc-tô-mét:
Giáo viên cần giúp học sinh nhận biết tên gọi, kí hiệu, độ lớn của hai đơn vị này
Chẳng hạn: 1dam = 10m ; 1hm = 10dam ; 1hm = 100m Tập ước lượng: Cột
cờ ở sân trường cao khoảng 1dam ; chiều dài sân bóng đá khoảng 1hm
Trang 5 Dạy đọc, viết danh số phức hợp:
Việc dạy đọc, viết các danh số phức hợp (số đo có hai tên đơn vị đo) được bắt đầu từ lớp 3 Ta có thể cho học sinh thực hành đo độ dài một đoạn thẳng AB nào đó, chẳng hạn được 1dm và 9cm Lúc đó ta chỉ cần viết ghép hai kết quả đo ấy lại thì được độ dài đoạn thẳng AB là 1dm 9cm Ở đây cần viết số đo ứng với đơn vị lớn trước, số đo ứng với đơn vị nhỏ sau ; không viết 9cm 1dm
Dạy học bảng đơn vị đo độ dài:
Việc dạy bài này nhằm giúp học sinh hệ thống hóa lại tất cả 7 đơn vị đo độ dài (từ km đến mm) ; đây còn là một công cụ đắc lực để giúp học sinh đổi số đo từ đơn vị này sang đơn vị khác Yêu cầu học sinh nắm được quan hệ của hai đơn vị đo liên tiếp: “ Trong bảng đơn vị đo độ dài, mỗi đơn vị gấp 10 lần đơn vị liền sau” Khi viết
số đo độ dài, mỗi chữ số ứng với một hàng đơn vị ( hay mỗi hàng đơn vị ứng với một chữ số)
Dạy đổi đơn vị:
- Đổi danh số đơn:
Ví dụ: 8 hm = m (Hướng dẫn nhẩm: 1hm = 100m ; vậy 8hm = 800m)
- Đổi danh số phức:
Ví dụ: 4m7cm = cm
* Cách 1: Đổi từng phần:
Hướng dẫn nhẩm: 1m = 100cm ; vậy 4m = 400cm ; thêm 7cm là 407cm
* Cách 2: Dùng bảng:
Ví dụ:Trong số đo 2468m thì: Chữ số 8 chỉ 8m; chữ số 6 chỉ 60m hay 6dam ; chữ số 4 chỉ 400m hay 4hm ; chữ số 2 chỉ 2000m hay 2km
1.2.2.Dạy học về diện tích:
Hình thành biểu tượng về diện tích:
Trang 6Thông qua việc hình thành biểu tượng về diện tích cần khắc sâu các công thức tính diện tích, từ đó hình thành kĩ năng:
- Cần đổi đơn vị đo của các yếu tố ra đơn vị đo thống nhất (Thực hiện đổi đơn
vị đo độ dài)
- Đổi đơn vị đo diện tích: “Hai đơn vị đo diện tích liền nhau trong bảng đơn vị gấp kém nhau 100 lần”
Dạy học về Xăng-ti-mét vuông ( cm2):
Muốn đo diện tích cần có đơn vị đo Đơn vị diện tích đầu tiên mà học sinh học
là cm2 Cầncung cấp thêm cho học sinh: Một xăng-ti-mét vuông là diện tích của hình vuông có cạnh 1cm Từ đó liên hệ sang diện tích con tem, diện tích nhãn vở
“khoảng” vài xăng-ti-mét vuông
Khi làm tính và giải toán với các số đo diện tích, cần lưu ý học sinh phải đưa các đại lượng có đơn vị tính khác nhau về cùng đơn vị
Ví dụ1: Giải toán (Bài 1 trang 153 SGK):
Tính diện tích hình chữ nhật có chiều dài 4dm, chiều rộng 8cm
- Bài toán cho biết gì?
(Chiều dài hình chữ nhật 4dm, chiều rộng hình chữ nhật 8cm)
- Bài toán hỏi gì?
(Diện tích của hình chữ nhật)
- Muốn tìm diện tích hình chữ nhật ta làm thế nào? Và cần lưu ý điều gì?
(Lấy chiều dài nhân với chiều rộng ; cùng đơn vị đo)
Bài giải
Đổi: 4dm = 40cm Diện tích hình chữ nhật đó là:
40 x 8 = 320 (cm2)
Đáp số: 320 cm2
Trang 7Ví dụ2: (Bổ sung):
Hình vuông có chu vi 60mm Hình chữ nhật có chiều dài hơn cạnh hình vuông 5mm, chiều rộng kém cạnh hình vuông cũng 5mm Tính diện tích hình chữ nhật bằng xăng-ti-mét vuông
- Muốn tính diện tích hình chữ nhật ta phải biết điều gì?
(Ta phải biết chiều dài và chiều rộng)
- Hình chữ nhật có chiều dài bao nhiêu, chiều rộng bao nhiêu?
(Chiều dài hơn cạnh hình vuông 5mm, chiều rộng kém cạnh hình vuông 5mm)
- Cạnh hình vuông bằng bao nhiêu?
(Chưa biết ; phải lấy chu vi chia cho 4)
Cách 1:
Bài giải
Cạnh hình vuông là:
60 : 4 = 15(mm) Chiều dài hình chữ nhật là:
15 + 5 = 20 (mm) Chiều rộng hình chữ nhật là:
15 - 5 = 10 (mm) Đổi: 20mm = 2cm
10mm = 1cm Diện tích hình chữ nhật đó là:
2 x 1 = 2 (cm2)
Đáp số: 2 cm2
Cách 2:
Bài giải
Trang 8Cạnh hình vuông là:
60 : 4 = 15(mm) Chiều dài hình chữ nhật là:
15 + 5 = 20 (mm) Chiều rộng hình chữ nhật là:
15 - 5 = 10 (mm) Diện tích hình chữ nhật là:
20 x 10 = 200 (mm2) Đổi: 200 mm2 = 2 cm2
Đáp số: 2 cm2
1.2.3.Dạy học về khối lượng:
Sau khi đã học về ki-lô-gam ở lớp 2, lên lớp 3 giới thiệu một đơn vị nhỏ hơn
ki- lô-gam là gam Học sinh tập đọc, viết các số đo khối lượng (tính theo gam); đồng
thời nhìn vào cân nêu khối lượng của các vật Học sinh tập cân chẳng hạn: cái kẹp tóc, cục tẩy, hộp bút,
* Cần lưu ý giáo dục cho học sinh tính trung thực trong lúc cân, đong, đo
- Làm tính, so sánh và giải toán với các số đo khối lượng
- Học sinh nắm thật chắc mối quan hệ giữa các đơn vị đo của cùng đại lượng
Ví dụ1: Tính (Bài 3 trang 66 SGK):
42g - 25g = 17g 96g : 3 = 32g 100g + 45g - 26g = 119g
Ví dụ2: (Bổ sung)
459g + 1kg = g 1kg - 200g = g
- Với hai phép tính trên, giáo viên hướng dẫn học sinh đưa về cùng đơn vị đo (1kg = 1000g) rồi tính
Trang 9Ví dụ3: Cô Lan có 1kg đường, cô đã dùng làm bánh hết 400g Sau đó cô chia đều số đường còn lại vào 3 túi nhỏ Hỏi mỗi túi có bao nhiêu gam đường? (Bài 3 trang 67 SGK)
Với đề toán này yêu cầu học sinh nêu được:
- Bài toán cho biết gì?
(Có 1kg đường, đã dùng hết 400g ; chia đều số đường còn lại vào 3 túi)
- Bài toán hỏi gì?
( Mỗi túi có bao nhiêu gam đường ?)
- Làm thế nào để tính được số đường ở mỗi túi?
(Lấy số có trừ đi số đường đã làm bánh, sau đó chia cho 3)
Bài giải
Đổi: 1kg = 1000g
Số gam đường còn lại là:
1000 - 400 = 600 (g)
Số gam đường mỗi túi có là:
600 : 3 = 200 (g)
Đáp số: 200g
Ví dụ4: (Bổ sung)
Mẹ Lan mua 2 gói bánh, mỗi gói cân nặng 400g và 5 gói kẹo, mỗi gói cân nặng 240g Hỏi mẹ Lan đã mua tất cả mấy ki-lô-gam bánh kẹo?
Với bài toán này nếu không đọc và phân tích kĩ thì học sinh rất dễ máy móc làm và đáp số ngay mà không đổi về ki-lô-gam như đề yêu cầu Giáo viên có thể hướng dẫn học sinh làm như sau:
- Bài toán cho biết gì?
(2 gói bánh, mỗi gói nặng 400g ; 5 gói kẹo, mỗi gói nặng 240g)
- Bài toán hỏi gì?
( Mua tất cả mấy ki- lô-gam bánh kẹo?)
Trang 10- Làm thế nào để tính được số ki-lô-gam bánh kẹo?
(Tính số bánh ở 2 gói, tính số kẹo ở 5 gói rồi cộng lại ; sau đó đổi ra ki- lô-gam)
Bài giải
Số bánh mẹ Lan đã mua là:
400 x 2 = 800 (g)
Số kẹo mẹ Lan đã mua là:
240 x 5 = 1200 (g)
Số bánh kẹo mẹ Lan đã mua là:
800 + 1200 = 2000(g) Đổi: 2000g = 2kg
Đáp số: 2kg
1.2.4.Dạy học về thời gian:
Hình thành biểu tượng về thời gian:
Thời gian không thể nhìn thấy hay cầm nắm, sờ mó được nên khó nhận thức đối với trẻ Để giúp học sinh “cảm nhận” được về thời gian, ta nên gắn với đời sống hàng ngày: Đi học lúc nào? Học ở trường từ mấy giờ đến mấy giờ? Làm bài kiểm tra trong bao lâu? ; về ý niệm: “nhanh” , “chậm” , “sớm” , “muộn”…
Để giúp học sinh bước đầu nhận biết về thời điểm, cần lưu ý giúp các em dùng
từ lúc một cách chính xác: Em đi học lúc 6 giờ 30 phút sáng, đến trường lúc 7 giờ
kém 15 phút …
Thời điểm là số chỉ trên đồng hồ; thời gian là hiệu của thời điểm cuối và thời điểm đầu
Để giúp học sinh bước đầu nhận biết về khoảng thời gian, cần lưu ý học sinh dùng các từ: từ đến ; trong ; mất ; hết
- Em học ở trường từ 7giờ đến 10 giờ 45 phút
Trang 11- Em học ở trường trong 3giờ 45 phút
Dạy xem đồng hồ và xem lịch:
* Nhận biết một ngày có 24 giờ và tên gọi tương ứng của mỗi giờ:
Dùng mô hình sau để giới thiệu cho các em biết một ngày có 24 giờ
* Biết thời gian của các buổi : (sáng, trưa, chiều, tối)
Giúp các em phân biệt được:
- Từ 1 giờ đến 10 giờ (Sáng)
- Từ 11 giờ đến 12 giờ (Trưa)
- Từ 13 giờ đến 18 giờ (Chiều)
- Từ 19 giờ đến 21 giờ (Tối)
- Từ 22 giờ đến 24 giờ (Đêm)
* Làm quen với với chiều quay của kim đồng hồ; biết chức năng của kim dài,
kim ngắn
- Kim dài chỉ phút, di chuyển đủ 1 vòng thì bằng 60 phút (tương đương 1 giờ)
Trang 12- Kim ngắn chỉ giờ, di chuyển từ một số này sang số khác liền kề thì bằng 60 phút (tương đương 1 giờ)
- Trên mặt đồng hồ, một vạch nhỏ tương đương 1 phút, lấy điểm xuất phát là
số 12, thì từ số 12 kim dài di chuyển đến số 1 sẽ là 5 phút, đến số 2 sẽ là 10 phút, đến số 3 sẽ là 15 phút, v.v… và hết 1 vòng là 60 phút
- Kim dài di chuyển thêm 1 vạch nhỏ thì được thêm 1 phút
- Ngoài ra, đồng hồ còn có kim chỉ giây, kim nhỏ nhất chạy theo từng giây, di
chuyển đủ một vòng thì bằng 60 giây, tương đương 1 phút (giới thiệu cho học sinh biết kim giây, không yêu cầu học)
* Cần lưu ý các câu hỏi ngược lại như: “Lúc 4 giờ kém 10 phút thì kim ngắn chỉ vào giữa hai số nào, kim dài chỉ số nào? ”
* Khi dạy học sinh tính các khoảng thời gian, chẳng hạn ví dụ sau:
Ví dụ: Mai đi từ nhà lúc 7 giờ kém 5 phút, tới trường lúc 7 giờ 10 phút Hỏi Mai đi từ nhà tới trường hết bao nhiêu phút?
- Đối với học sinh đại trà: Đếm số vạch nhỏ kể từ số 11 đến số 2: Có 3 khoảng, mỗi khoảng là 5 phút ; vậy tất cả là: 5 x 3 = 15(phút)” Trả lời: Lan đi từ nhà tới trường hết 15 phút
- Đối với học sinh giỏi: Hướng dẫn học sinh làm tính với số đo thời gian theo kiểu:
7 giờ 10 phút - 6 giờ 55 phút = 6 giờ 70 phút - 6 giờ 55 phút = 15 phút
* Học sinh xem lịch để biết một ngày nào đó là thứ mấy trong tuần, ngày mấy trong tháng Yêu cầu học sinh phải biết số ngày trong từng tháng Để giúp học sinh nắm vững số ngày trong từng tháng, giáo viên có thể hướng dẫn các em:
Trang 13- Các tháng 1,3,5,7 (bốn số lẻ liên tiếp) và tháng 8,10,12 (ba số chẵn liên tiếp) đều có 31 ngày, các tháng còn lại (4,6,9,11) có 30 ngày; riêng tháng 2 chỉ có 28 hoặc
29 ngày (năm nhuận thì tháng 2 có 29 ngày)
- Hoặc cách đếm trên “ nắm tay phải” từ trái sang phải rồi đảo lại.::
+ Đầu xương lồi lên chỉ tháng có 31 ngày
+ Chỗ lõm chỉ tháng có 30 ngày
+ Chỗ lõm sâu nhất là tháng 2 chỉ có 28 (hoặc 29 ngày)
1.2.5.Dạy học về tiền Việt Nam:
Khi giới thiệu các tờ bạc, giáo viên cần lưu ý học sinh về:
- Màu sắc đặc trưng của tờ bạc, chẳng hạn: đỏ.
- Mệnh giá: chẳng hạn Mười nghìn đồng và số 10000 đồng.
- Hình ảnh nổi ở hai mặt, chẳng hạn:
+ Mặt trước: Bác Hồ và Quốc huy
+ Mặt sau: Giàn khoan dầu khí
- Hình ảnh chìm: Bác Hồ (phải soi trước ánh sáng mới thấy)
* Cần tổ chức cho học sinh thực hành:
- Tập đổi tiền, tính tiền, tính tiền trả lại,…
- Tập mua bán, trao đổi và sử dụng tiền trong đời sống
- Giải các bài toán có liên quan đến tiền tệ
2 Khả năng áp dụng:
Với kinh nghiệm: “Dạy các đơn vị đo đại lượng trong môn toán lớp 3” nhằm
giúp cho học sinh nắm vững và vận dụng tốt các kiến thức và kĩ năng trong quá trình học và giải toán; khắc phục hạn chế vốn có trong thực tại dạy học toán hiện nay, từng bước nâng cao chất lượng học toán cho học sinh Thông qua học toán, học sinh không những được trang bị về các kiến thức toán cần thiết mà quan trọng hơn là được