Bài 2: Các bài toán tìm khoảng cách – Khóa LTĐH Đảm bảo – Thầy Phan Huy Khải. Hocmai.vn – Ngôi trường chung của học trò Việt 1 BTVN BÀI CÁC BÀI TOÁN TÌM KHOẢNG CÁCH Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, có SA h và vuông góc với mp(ABCD). Dựng và tính độ dài đoạn vuông góc chung của: a) SB và CD b) SC và BD Bài 2: Cho chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách giữa hai đường thẳng SA và BC. Bài 3: Cho hình chóp tam giác S.ABC có SA vuông góc với mp(ABC) và 2. SA a . Đáy ABC là tam giác vuông tại B với BA=a. Gọi M là trung điểm của AB. Tìm độ dài đoạn vuông góc chung của 2 đường thẳng SM và BC. Bài 4: Trong mặt phẳng (P) cho hình thoi ABCD có tâm là O, cạnh a và 3 . 3 a OB Trên đường thẳng vuông góc với mp(ABCD) tại O, lấy điểm S sao cho . SB a Tính khoảng cách giữa hai đường thẳng SA và BD. Bài 5: Cho tứ diện ABCD với AB=CD=a, AC=BD=b, BC=AD=c. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy tính độ dài đoạn vuông góc chung của AB và CD ………………….Hết………………… Nguồn: Hocmai.vn . Bài 2: Các bài toán tìm khoảng cách – Khóa LTĐH Đảm bảo – Thầy Phan Huy Khải. Hocmai.vn – Ngôi trường chung của học trò Việt 1 BTVN BÀI CÁC BÀI TOÁN TÌM KHOẢNG CÁCH Bài 1: Cho. mp(ABCD) tại O, lấy đi m S sao cho . SB a Tính khoảng cách giữa hai đường thẳng SA và BD. Bài 5: Cho tứ diện ABCD với AB=CD=a, AC=BD=b, BC=AD=c. Gọi I và J lần lượt là trung đi m của AB và. CD b) SC và BD Bài 2: Cho chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách giữa hai đường thẳng SA và BC. Bài 3: Cho hình chóp