1. Trang chủ
  2. » Luận Văn - Báo Cáo

Không gian phân nhớ và một vài tính chất

44 305 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 572,47 KB

Nội dung

Không gian phân nhớ và một vài tính chất

❚r➢ê♥❣ ➤➵✐ ❤ä❝ ❚➞② ◆❣✉②➟♥ ❑❤♦❛ ❑❤♦❛ ❤ä❝ tù ♥❤✐➟♥ ✈➭ ❝➠♥❣ ♥❣❤Ö ❇é ♠➠♥ ❚♦➳♥ ▲➟ ◆❣ä❝ ❙➡♥ ❑❤➠♥❣ ❣✐❛♥ ♣❤➞♥ t❤í ✈➭ ▼ét ✈➭✐ tÝ♥❤ ❝❤✃t ◆❣➭♥❤✿ ❙➢ ♣❤➵♠ ❚♦➳♥ ❇▼❚ ✲ ✷✵✶✶ ❚r➢ê♥❣ ➤➵✐ ❤ä❝ ❚➞② ◆❣✉②➟♥ ❑❤♦❛ ❑❤♦❛ ❤ä❝ tù ♥❤✐➟♥ ✈➭ ❝➠♥❣ ♥❣❤Ö ❇é ♠➠♥ ❚♦➳♥ ▲➟ ◆❣ä❝ ❙➡♥ ❑❤ã❛ ❧✉❐♥ tèt ♥❣❤✐Ö♣ ❑❤➠♥❣ ❣✐❛♥ ♣❤➞♥ t❤í ✈➭ ▼ét ✈➭✐ tÝ♥❤ ❝❤✃t ●❱❉❍✿ ❚s✳ ◆❣➠ ➜×♥❤ ◗✉è❝ ❇▼❚ ✲ ✷✵✶✶ ờ ể t tốt ệ t ợ rt ề sự q t từ t ì ũ ớ tì t ò ết s s t ì ố ờ rt ề tờ qý t ết ể ú ỡ t tr q trì t tể t trờ ọ ữ ờ ờ tr trì tì tr tứ ữ ờ ệt tì ỗ trề t t ữ ế tứ qý tr sốt q trì ọ t t trờ t tể ớ t ọ ề ệ tốt t t tr q trì ọ t t ố ù t ố ẹ t ộ ú ỡ t tr ữ t ọ ọ ũ tr q trì t tự ệ ụ ụ r ụ ì ờ ụ ụ s ì ở í tết ụ t ủ ề t í tết ụ t ủ ề t ổ q t ệ ứ tế ứ ứ ộ ứ tế ứ P ộ ứ ế tứ ị t T 2 tụ tr t ý tết trù t ứ tớ ột tí t ệ tớ tớ ột số í ụ t t ủ tớ ủ tớ í tớ tớ tí ự ế t ẹ ủ tớ tớ s í t ị ủ tớ ự ở rộ ủ t t ết ệ t ❉❛♥❤ s➳❝❤ ❤×♥❤ ✶✳✶ ❍×♥❤ ✶✿ ❇➯♥ ➤å ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✶✳✷ ❍×♥❤ ✷✿ ❊❧✐♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✶✳✸ ❍×♥❤ ✸✿ ❇➯♥ ➤å ♣❤ï ❤î♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✹ ❍×♥❤ ✹✿ ❊❧✐♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✷✳✶ ❍×♥❤ ✺✿ P❤➞♥ t❤í ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✷ ❍×♥❤ ✻✿ ❉➯✐ ▼♦❜✐✉s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✷✳✸ ❍×♥❤ ✼✿ P❤➞♥ t❤í t✐Õ♣ ①ó❝✱ ♣❤➞♥ t❤í ❝❤✉➮♥ t➽❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✷✳✹ ❍×♥❤ ✽✿ ◆❤➳t ❝➽t ♣❤➞♥ t❤í ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✹ ở í tết ụ t ủ ề t í tết P tớ t ụ q trọ tr ứ ì ọt ể ớ ứ ì ọ tì t ộ ứ ữ ữ ệ tí t ủ tớ tớ t ệ tớ t t ệ ữ tr trì ủ rt ề í tết t ữ ị ĩ ết q t ề tớ ợ t t ứ tr trì ủ ì tr ể từ ó í tết tớ trở t ột tr ữ ố tợ ứ q trọ ủ t số ột ụ q trọ tr ứ ì ọ ể t ứ ổ s ế tứ ề ì ọ t ọ ứ ề t tớ ột tí t ụ t ủ ề t ề t trì ệ ề tớ ột số í ụ ề tớ rì ứ ột số tí t ủ tớ ổ q t ệ ứ ệ tớ t t ệ ữ tr trì ủ rt ề í tết t ữ ị ĩ ết q t ề tớ ợ t t ứ tr trì ủ ì tr ể từ ó í tết tớ trở t ột tr ữ ố tợ ứ q trọ ủ t số ột ụ q trọ tr ứ ì ọ tr ệ tố ứ ề tớ tr ó r r trú ủ tớ ột ó t t ì ừ rr s tỏ ệ ớ tr ủ tớ sử ụ ó ể ứ ị í số t ề ó ợ t tr ố rss r ủ t ữ t ỷ rt t rr t trể ý tết ột ý tết ố ồ ề tổ qt ợ ị ở ớ ổ ị ủ tớ t ị í t tt ợ ứ ột ị í tr ý tết s qết ề trờ t tr q sử ụ ý tết tế ứ ứ ộ ứ tế ứ t t ệ tr ớ ó q ế ề t ở t ệ s ở t t í tr trt ứ t ệ tì trì ứ tí t ó t ứ ở ử ụ ứ t ọ ứ ý tết ✼ ✵✳✸✳✷ P❤➵♠ ✈✐ ✈➭ ♥é✐ ❞✉♥❣ ♥❣❤✐➟♥ ❝ø✉ ✰ ❚r×♥❤ ❜➭② ❝➳❝ ❦❤➳✐ ♥✐Ö♠ ❝ñ❛ ❦❤➠♥❣ ❣✐❛♥ ♣❤➞♥ t❤í ✭➤Ò t➭✐ ❝❤Ø ①Ðt ♣❤➞♥ t❤í tæ♥❣ q✉➳t✮ ✈➭ ♠ét sè tÝ♥❤ ❝❤✃t ❝ñ❛ ❦❤➠♥❣ ❣✐❛♥ ♣❤➞♥ t❤í✳ ✰ ❚r×♥❤ ❜➭② ❝❤ø♥❣ ♠✐♥❤ ❦❤➳❝ ❝➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ ❦❤➠♥❣ ❣✐❛♥ ♣❤➞♥ t❤í✳ [...]... là một quan hệ là một không gian Hausdorff e ( A) là một phức con en 1.17 ([3]-Tr.115) Một cặp nếu en là giao tất cả các phức con chứa (ii) (Tôpô yếu) Với mỗi tập con CW phức B n \S n1 X\A là hợp các không (được gọi là các khoang) thỏa mãn các điều Chương 2 Không gian phân thớ một vài tính chất 2.1 Khái niệm không gian phân thớ (phân thớ) một số ví dụ Định nghĩa 2.1 ([6]- Tr.3) Một phân. .. gồm: (i) Một không gian tôpô E gọi là không gian toàn phần (ii) Một không gian tôpô B gọi là không gian cơ sở (iii) Một ánh xạ liên tục (iv) Một không gian F p : E B gọi là phép chiếu phân thớ gọi là thớ Thỏa mãn các điều kiện sau: (1) p1 (b) đồng phôi với (2) Với mỗi bB F với mọi bB tồn tại một lân cận : Ub ì F p1 (Ub ) sao cho Hình Ub của b, một phép đồng phôi p((b , x)) = b 2.1: Phân thớ... xạ |A1 = (|A)|A1 A B Khi đó: uA = u|(E(|A)) : |A |A A1 A B |B = 30 là một Acấu (vu)A = vA uA xạ Nếu v : (1 )A = 1|A được xác định như các hàm tử B1 , qua ánh xạ Ví dụ f, kí hiệu không gian tổng một không gian con của không gian bao gồm các cặp phép chiếu u uA = (E, p, B), f : B1 B là một phân thớ có không gian cơ sở là f (b1 ) = p(x), BunB BunA là một ánh xạ liên tục Phân. .. nghĩa gian con của (E , p , A) Ví dụ B B Khi đó sự hạn chế của trong đó E = p1 (A) 2.6 ([4]- Tr.17,18) Cho với thớ F thớ tích trên A A với thớ = (E, p, B), A là một không trên A, |A, B Khi đó là một phân thớ tích trên |A = (A ì F, p, A) là một phân thớ trên B, thì ta có Nếu u : là là một F Sự thu hẹp của phân thớ thỏa mãn tính chất bắc cầu Nếu phân thớ p|E = p = (B ì F, p, B) là một. .. Hausdorff) nếu với mọi các lân cận Ví dụ Ux của x Vy của y là một tập đóng là một không gian tôpô, U = {U Y : U = Y V, V T } sao cho là Không gian Y X Y Tôpô (Y, U) được (X, T ) X được gọi là x, y X mà T2 không x=y tồn tại Ux Vy = 1.3 1 Mọi không gian metric đều là không gian Hausdorff Thật vậy, giả sử Khi đó ta có X là một không gian metric bất kì d(a, b) = > 0 Xét các hình cầu mở G H = ... = B ánh xạ = Id : B ì F B ì F (b, x) (b, x) Ta có Ví dụ là phép đồng phôi p((b, x)) = p(b, x) = b Dải Mobius) Một ví dụ đơn giản của không gian phân thớ là dải 2.2 ( Mobius Nó được xây dựng bằng cách xoắn một đầu của 1 mảnh giấy sau đó dán 2 đầu lại với nhau Khi đó ta một không gian phân thớ với các thớ là các đoạn thẳng, không gian cơ sở của các đoạn thẳng là một đường tròn Phép chiếu phân. .. đó S n ) (M, q, S n ) là một phân thớ trên Sn (gọi là phân thớ chuẩn tắc của 23 2.2 ([4]- Tr.11) Định nghĩa (E, p, B) nếu E (E , p , B ) được gọi là một phân thớ con của là không gian con của E, B là không gian con của B p = p|E : E B 2.2 Nhát cắt của phân thớ Định nghĩa E 2.3 ([4]- Tr.12) Cho = (E, p, B) là một phân thớ, s : B là một ánh xạ liên tục thỏa mãn cắt của phân thớ thỏa mãn p s =... 2 Phạm trù không gian tôpô, kí hiệu Top bao gồm: mỗi vật là một không gian tôpô, mỗi cấu xạ là một ánh xạ liên tục, phép nhân các cấu xạ là phép hợp thành các ánh xạ 3 Phạm trù không gian Vectơ, kí hiệu Vect bao gồm: mỗi vật là một không gian vectơ, mỗi cấu xạ là một ánh xạ tuyến tính, phép nhân các cấu xạ là phép hợp thành các ánh xạ 4 Phạm trù tập hợp với điểm cơ sở bao gồm: mỗi vật là một cặp (A,... Tr.15) Một phân thớ (E, p, B) được gọi là tầm cấu với phân thớ tích (B ì 2.8 ([4]- Tr.15) Phạm trù của các phân thớ , kí hiệu Bun, thường với thớ F nếu (E, p, B) là B -đẳng F, q, B) Định nghĩa bao gồm: mỗi vật là một phân thớ, mỗi cấu xạ là một cấu xạ của phân thớ, phép nhân các cấu xạ là phép hợp thành các cấu xạ phân thớ 26 Với mỗi không gian B các Bcấu B, ta kí hiệu BunB là phạm trù các phân thớ... đó ta có tập X đồng thời vừa là tập đóng, vừa là tập mở 2 Xét R với tôpô tự nhiên thì mỗi khoảng một tập mở, mỗi đoạn Định nghĩa Khi đó họ U (a, b) = {x : a < x < b} [a, b] = {x : a x b} 1.4 ([1]-Tr.98) Cho (X, T ) được gọi là tôpô cảm sinh bởi tôpô T trên là một tôpô trên Y gọi là không gian con của không không gian tôpô Định nghĩa 1.5 ([1]-Tr.91) Không gian tôpô gian (hay không gian Hausdorff) 123doc.vn

Ngày đăng: 15/03/2013, 09:41

HÌNH ẢNH LIÊN QUAN

Hình 1.2: Elip - Không gian phân nhớ và một vài tính chất
Hình 1.2 Elip (Trang 18)
Hình 1.3: Bản đồ phù hợp - Không gian phân nhớ và một vài tính chất
Hình 1.3 Bản đồ phù hợp (Trang 19)
Hình 2.1: Phân thớ 20 - Không gian phân nhớ và một vài tính chất
Hình 2.1 Phân thớ 20 (Trang 23)
Hình 2.2: Dải Mobius - Không gian phân nhớ và một vài tính chất
Hình 2.2 Dải Mobius (Trang 24)
Hình 2.3: Phân thớ tiếp xúc, phân thớ chuẩn tắc - Không gian phân nhớ và một vài tính chất
Hình 2.3 Phân thớ tiếp xúc, phân thớ chuẩn tắc (Trang 25)
Hình 2.4: Nhát cắt phân thớ - Không gian phân nhớ và một vài tính chất
Hình 2.4 Nhát cắt phân thớ (Trang 26)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w