1. Trang chủ
  2. » Giáo án - Bài giảng

Giải BT bằng cách lập Phương trình(L9)

13 651 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 131 KB

Nội dung

Đối với các học sinh ở lớp cao hơn thì tính chất phức tạp đề bài toán dới dạng phơng trình cũng dần đợc nâng lên.. Tuy nhiên đối với học sinh lớp 8, lớp 9 các đề toán về phơng trình có t

Trang 1

Sáng kiến kinh nghiệm.

Dạy học Giải toán bằng cách lập phơng trình

và hệ phơng trình.

a đặt vấn đề

Nh chúng ta đã biết, ngay từ những ngày đầu mới cắp sách đến trờng Học sinh lớp 1 đã đợc tập giải phơng trình Đó là những phơng trình rất đơn giản dới dạng

điền số thích hợp vào ô trống Đối với các học sinh ở lớp cao hơn thì tính chất phức tạp đề bài toán dới dạng phơng trình cũng dần đợc nâng lên Đó là những phơng trình viết sẵn, học sinh chỉ việc giải phơng trình, tìm ra ẩn số

Tuy nhiên đối với học sinh lớp 8, lớp 9 các đề toán về phơng trình có thêm dạng bài toán có lời, học sinh căn cứ vào đề bài toán để thành lập phơng trình Kết quả của bài toán không chỉ phụ thuộc vào kỹ năng giải phơng trình và còn phụ thuộc nhiều vào việc thành lập phơng trình

Đề bài toán là một đoạn văn mô tả mối quan hệ giữa các đại lợng đã biết và các đại lợng cần tìm Yêu cầu học sinh phải có kiến thức phân tích, khái quát, tổng hợp liên kết các đại lợng với nhau, chuyển đổi từ ngôn ngữ thông thờng sang ngôn ngữ toán học để thành lập phơng trình để giải

Nội dung của bài toán hầu hết gắn với thực tiễn đời sống con ngời, nên trong quá trình giải loại toán này học sinh thờng không lu tâm đến yếu tố thực tiễn dẫn đến đáp số vô lý

Việc giải các bài toán bằng cách lập phơng trình đối với học sinh ở bậc THCS là một việc làm mới mẻ và khá khó khăn, dễ gây tình trạng học sinh chán nản hoặc sợ hãi khi gặp dạng toán này

Chính vì vậy nhiệm vụ của ngời thầy giáo không chỉ đơn thuần truyền thụ cho học sinh những kiến thức cơ bản theo trình tự sách giáo khoa, mà vấn đề đặt ra

là ngời thầy phải dạy cho học sinh phơng pháp giải loại toán này phải dựa trên những qui tắc chung là: Yêu cầu về giải một bài toán, qui tắc giải bài toán bằng cách lập phơng trình , phân loại các loại toán dựa vào quá trình biến thiên của các

đại lợng làm sáng tỏ mối quan hệ giữa các đại lợng dẫn đến lập đợc phơng trình dễ dàng Đây là một bớc đặc biệt quan trọng và khó khăn đối với học sinh

Trang 2

Qua tham khảo, học hỏi bằng những kinh nghiệm rút ra sau những năm giảng dạy ở lớp 8, lớp 9 trực tiếp thử nghiệm, tôi viết sáng kiến kinh nghiệm:

“Dạy giải bài toán bằng cách lập phơng trình và hệ phơng trình ”

b nội dung

I Phơng pháp nghiên cứu và yêu cầu về giải một bài toán.

1 Phơng pháp nghiên cứu.

Giải bài toán bằng cách lập phơng trình (hệ phơng trình ) là một trọng tâm của Đại số 8, 9 Nó đòi hỏi khả năng phân tích và trừu tợng hoá các sự kiện cho trong bài toán thành các kiến thức và phơng trình (hệ phơng trình ) Nó cũng đòi hỏi kĩ năng giải phơng trình ( hệ phơng trình ) và lựa chọn nghiệm thích hợp Vì vậy phơng pháp hớng dẫn học sinh giải loại toán này là dựa vào qui tắc chung: Tóm tắt các bớc giải bài toán bằng cách lập phơng trình

* Bớc 1: Lập phơng trình (hệ phơng trình )

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số

- Biểu diễn các đại lợng cha biết theo ẩn và các đại lợng đã biết

- Lập phơng trình (hệ phơng trình ) biểu thị mối quan hệ giữa các đại lợng

* Bớc 2: Giải phơng trình (hệ phơng trình )

* Bớc 3: Trả lời:

Kiểm tra xem trong các nghiệm, nghiệm nào thoả mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận

Mặc dù đã có qui tắc trên xong ngời giáo viên trong quá trình hớng dẫn giải loại toán này cho học sinh vận dụng theo sát yêu cầu về giải một bài toán nói chung

2 Yêu cầu về giả một bài toán.

2.1 Yêu cầu 1: Lời giải không phạm sai lầm và không có sai sót mặc dù nhỏ.

Muốn cho học sinh không mắc sai phạm này giáo viên phải làm cho học sinh hiểu đề toán và trong quá trình giải không có sai sót về kiến thức, phơng pháp suy luận, kỹ năng tính toán, ký hiệu, điều kiện của ẩn, phải rèn cho học sinh thói quen đặt điều kiện cho ẩn và xem xét, đối chiếu kết quả với điều kiện của ẩn có hợp lý cha

2.1 Yêu cầu 2: Lời giải bài toán lập luận phải có căn cứ chính xác.

Đó là trong quá trình thực hiện từng bớc có lôgic chặt chẽ với nhau, có cơ

sở lý luận chặt chẽ, đặc biệt phải chú ý đến việc thoả mãn điều kiện nêu trong giả thiết Xác định ẩn khéo léo, mọi quan hệ giữa ẩn và dữ kiện đã cho làm nổi bật đ

-ợc ý phải tìm Nhờ mối tơng quan giữa các đại lợng trong bài toán thiết lập đ-ợc

Trang 3

phơng trình (hệ phơng trình ) từ đó tìm đợc giá trị của ẩn số Muốn vậy giáo viên cần làm cho học sinh hiểu đợc đâu là ẩn? đâu là dữ kiện? đâu là điều kiện? Có thể thoả mãn đợc điều kiện hay không? điều kiện có đủ để xác định đợc ẩn không? Từ

đó mà xác định hớng đi, xây dựng đợc cách giải

Ví dụ 1:

Hai cạnh của một khu đất hình chữ nhật hơn kém nhau 4m Tính chu vi của khu đất đó nếu biết diện tích của nó bằng 1200m2

H

ớng dẫn:

ở đây bài toán hỏi chu vi của hình chữ nhật Học sinh thờng có xu thế bài toán hỏi gì thì gọi đó là ẩn, nếu gọi chu vi của hình chữ nhật là ẩn thì bài toán đi vào bế tắc khó có lời giải Giáo viên cần hớng dẫn học sinh phát triển sâu trong khả năng suy diễn để từ đó đặt vấn đề: Muốn tính chu vi hình chữ nhật ta cần biết gì? => (cạnh hình chữ nhật)

Từ đó: Gọi chiều rộng khu đất hình chữ nhật là x (đơn vị mét, điều kiện x > 0)

Từ đó có phơng trình x ( x + 4 ) = 120 <=> x2 + 4x – 1200 = 0

Giải phơng trình ta có: x1 = 30; x2 = -34

Giáo viên giúp học sinh từ điều kiện để loại nghiệm x2 = -34

Chỉ lấy x1 = 30 => chiều dài là 30 + 4 = 34

Chu vi là: 2(30 + 34) = 128(m)

L

u ý : ở bài toán này nghiệm x2 = -34 có giá trị tuyệt đối bằng chiều dài hình chữ nhật, học sinh dễ mắc sai lầm coi đó là kết quả (nghiệm) của bài toán

2.3 Yêu cầu 3: Lời giải phải đầy đủ, mang tính toàn diện.

Hớng dẫn học sinh không đợc bỏ sót khả năng chi tiết nào, không thừa

nh-ng cũnh-ng khônh-ng thiếu, rèn cho học sinh cách kiểm tra lại lời giải đã đầy đủ cha? Kết quả của bài toán đã là đại diện phù hợp với mọi cái chung Nếu thay đổi điều kiện bài toán rơi vào trờng hợp đặt biệt thì kết quả vẫn luôn đúng

Ví dụ 2:

Một tam giác có chiều cao bằng

4

3 cạnh đáy Nếu chiều cao tăng thêm 3dm và cạnh đáy giảm đi 2dm thì diện tích của nó tăng thêm 12dm2 Tính chiều cao và cạnh đáy?

H

ớng dẫn:

Lu ý cho học sinh dù có thay đổi chiều cao, cạnh đáy của tam giác thì diện tích (S) của nó luôn đợc tính theo công thức

Trang 4

x 2

1

S (cạnh đáy x chiều cao)

Từ đó gọi chiều dài cạnh đáy(lúc đầu) là x(dm) x > 0

Thì chiều cao (lúc đầu) sẽ là

4

3 x

=> Diện tích lúc đầu là x x

4

3 2

1

Diện tích sau là   

4

3 2 2

1

x

x .

Ta có phơng trình

4

3 2

1 3 4

3 2 2

1

x x x

Giải phơng trình ta đợc x= 20 thoả mãn điều kiện

=> Chiều cao lúc đầu là 20 15dm

4

3

2.4 Yêu cầu 4: Lời giải bài toán phải đơn giản

Bài toán phải đảm bảo đợc 3 yêu cầu trên không sai sót, có lập luận, mang tính toàn điện và phù hợp kiến thức, trình độ của học sinh, đại đa số học sinh hiểu

và làm đợc

Ví dụ 3: (Bài toán cổ)

“Vừa gà vừa chó

Bó lại cho tròn

36 con

100 chân chẵn Hỏi có mấy gà, mấy chó?”

Với bài toàn này nếu giải nh sau:

Gọi số gà là x (x > 0; xN), thì số chó sẽ là 36 – x

Số chân gà là 2x; số chân chó là 4(36 - x)

Ta có phơng trình 2x + 4(36 – x) = 100

Giải ra ta có: x = 22=> Số gà là 22 con

Số chó là 36 – 22 = 14con Thì bài toán sẽ ngắn gọn, dễ hiểu

Nhng có học sinh giải theo cách dùng 2 ẩn (x, y), hoặc gọi là chân gà là x thì

đã vô tình đa thành bài toán khó hiểu không hợp vào trình độ học sinh

Trang 5

2.5 Yêu cầu 5: Lời giải phải trình bày khoa học.

Đó là lu ý đến mối quan hệ giữa các bơc giải trong bài toán phải lôgic, chặt chẽ với nhau Các bớc sau đợc suy ra từ các bớc trớc nó đã đợc kiểm nghiệm, chứng minh là đúng hoặc những điều đã biết từ trớc

Ví dụ 4:

Chiều cao của một tam giác vuông = 9,6m và chia cạnh huyền thành hai

đoạn hơn kém nhau 5,6m Tính độ dài cạnh huyền của tam giác?

Ta có hình vẽ

Theo hình vẽ bài toán yêu cầu tìm độ dài BC khi biết AH

Trớc khi giải cần kiểm tra kiến thức học sinh để củng cố công thức

AH2 = BH CH

Để từ đó: Gọi độ dài BH là x (x>0)(m)

=> CH có độ dài là x + 5,6

Ta có phơng trình x ( x + 5,6) = 9,62

Giải phơng trình ta có x = 7,2 thoả mãn điều kiện => độ dài cạnh huyền là (7,2 + 5,6) + 7,2 = 20(m)

2.6 Yêu cầu 6: Lời giải bài toán phải rõ ràng, đầy đủ, có thể nên thử lại

Lu ý đến việc giải các bớc lập luận, tiến hành không chồng chéo, phủ định

lẫn nhau Kết quả phải đúng nên rèn cho học sinh thói quen thử lại kết quả và tìm hết các nghiệm của bài toán, tránh bỏ sót nhất là đối với phơng trình bậc 2, hệ

ph-ơng trình

II Các giai đoạn giải bài toán bằng cách lập phơng trình, hệ phơng trình.

1 Phân giai đoạn:

Để đảm bảo 6 yêu cầu về giải một bài toán và 3 bớc trong qui tắc giải nh đã nêu ở phần I thì giải bài toán loại này có thể chia thành 7 giai đoạn cụ thể nh sau:

1.1 Giai đoạn 1:

Đọc kĩ đề bài, phân tích viết giả thiết, kết luận của bài toán

A

Trang 6

Giúp học sinh hiểu bài toán cho những dữ kiện gì? Cần tìm gì? Có thể mô tả bằng hình vẽ đợc không?

1.2 Giai đoạn 2:

Nêu rõ các vấn đề liên quan để lập phơng trình Tức là chọn ẩn nh thế nào cho phù hợp, điều kiện của ẩn thế nào cho thoả mãn

1.3 Giai đoạn 3: Lập phơng trình.

Dựa vào các quan hệ giữa ẩn số và các đại lợng đã biết, dựa vào các công thức, tính chất để xây dựng phơng trình, biến đổi tơng đơng phơng trình đó về

ph-ơng trình về dạng đã biết

1.4 Giai đoạn 4: Giải phơng trình: Vận dụng các kỹ năng giải phơng trình đã biết

để tìm nghiệm phơng trình

1.5 Giai đoạn 5:

Nghiên cứu nghiệm của phơng trình để xác định lời giải của bài toán Tức

là xét nghiệm của phơng trình với điều kiện đặt ra của bài toán với thực tiễn xem

có phù hợp không?

1.6 Giai đoạn 6: Trả lời bài toán, kết luận nghiệm của bài toán có mấy nghiệm

sau khi đã đợc thử lại

1.7 Giai đoạn 7:

Phân tích biện luận cách giải này thờng mở rộng với học sinh khá, giỏi sau khi đã giải xong có thể hỏi ý kiến học sinh biến đổi bài toán đã cho thành bài toán khác nh:

- Giữ nguyên ẩn số thay đổi giữ kiện, giả thiết

- Giữ nguyên các dữ kiện thay đổi ẩn và giả thiết

- Giải bài toán bằng cách khác, tìm cách giải hay nhất

2 Ví dụ minh hoạ cho các giai đoạn giải bài toán bằng cách lập phơng trình.

Ví dụ 5:

Nhà Bác An thu hoạch đợc 480kg cà chua và khoai tây Khối lợng khoai tây gấp 3 lần khối lợng cà chua Tính khối lợng mỗi loại?

H

ớng dẫn giải:

+ Giai đoạn 1: Giả thiết: Khoai + cà chua = 480kg

Khoai = 3lần cà chua Kết luận: Tìm kg khoai? Kg cà chua?

+ Giai đoạn 2: Thờng là: Điều kiện cha biết đợc gọi là ẩn?

Trang 7

ở bài này cả số lợng cà chua và khoai tây đều cha biết nên có thể gọi ẩn là

1 trong 2 loại (hoặc cả 2 loại)

Cụ thể: Gọi khối lợng khoai là x(kg) x>0

Thì khối lợng cà chua là 480 – x(kg) (Hoặc khối lợng khoai là x, khối lợng cà chua là y(kg) x, y > 0 => x+ y = 480)

+ Giai đoạn 3: Lập phơng trình

Do mối quan hệ Khoai = 3 x cà chua

Ta có phơng trình x = 3(480 – x) (*)

Hoặc 

 480 3

y x y x

(**)

+ Giai đoạn 4 : Giải phơng trình.

Giải (*) ta đợc x = 360(kg)

Hoặc giải (**) ta đợc x = 360(kg); y = 120(kg)

+ Giai đoạn 5 : Đối chiếu nghiệm đã giải với điều kiện đề ra xem mức độ thoả

mãn hay không thoả mãn

Từ đó => Khối lợng cà chua là 480 – 360 = 120(kg)

Cho học sinh thử lại => đúng

+ Giai đoạn 6 : Trả lời

Vậy khối lợng khoai đã thu là 306kg

Khối lợng cà chua đã thu là 120kg

+ Giai đoạn 7:

- Từ việc chọn ẩn khác nhau dẫn đến lập phơng trình hoặc hệ phơng trình cho ta nhiều cách giải, nhng lu ý cho học sinh tốt nhất là đa về lập phơng trình

đơn giản hơn, dễ giải hơn

- Có thể từ bài toán này xây dựng bài toán mới Chẳng hạn :

“Một phân số có tổng của tử và mẫu là 480 Biết rằng mẫu số gấp 3 lần tử số Tìm phân số đó”

III Phân loại dạng toán giải bài toán bằng cách lập phơng trình (hệ phơng trình).

Các bài toán giải bằng cách lập phơng trình có thể phân lôi thành một số dạng chính nh sau:

1 Dạng toán chuyển động.

Ví dụ 6:

Một sà lan xuôi dòng từ A đến B mất 2,5giờ và ngợc dòng từ B về A mất 4 giờ Biết vận tốc dòng nớc là 3km/h, tính khoảng cách AB

Trang 8

ớng dẫn

- Biết vận dụng linh hoạt công thức: Quãng đờng = Vận tốc x Thời gian

- Bài toán trên là bài toán chuyển động trong dòng chảy

Ta có công thức:

Vận tốc xuôi dòng = Vận tốc riêng + Vận tốc dòng nớc

Vận tốc ngợc dòng = Vận tốc riêng – Vận tốc dòng nớc

(Vận tốc riêng > Vận tốc dòng nớc)

- Nếu chọn ẩn gián tiếp, tức là: Gọi vận tốc riêng của sà lan là x(km/h) (x>3) ta dẫn đến phơng trình

2,5(x + 3) = 4(x – 3) (1) Nếu chọn ẩn trực tiếp, tức là: Gọi khoảng cách AB là x(km) dẫn đến phơng trình

3 4

3 5

2   

x x

Rõ ràng phơng trình (1) đơn giản hơn phơng trình (2)

Lu ý: Trong khâu chọn ẩn có thể đặt một đại lợng trung gian làm ẩn cho ta

phơng trình đơn giản hơn

2 Dạng toán liên quan đến số học.

Ví dụ 7: Tìm hai số biết tổng là 17 và tổng các bình phơng của chúng là 157

H

ớng dẫn giải:

Cách Quá trình Số thứ nhất Số thứ hai P.t xây dựng

1 Chi bình phơng x(x0) 17 – x x2 + (17-x) = 157

2 Chia bình phơng x(x0) y(y 0) 

157 17 2 2

y x y x

Chú ý: Với dạng toán liên quan đến số học cần chú ý về cấu tạo số; đặc

biệt chú ý điều kiện của ẩn

3 Dạng toán về năng suất lao động (tỉ số phần trăm).

Ví dụ 8:

Trong tháng đầu 2 tổ sản xuất đợc 400 chi tiết máy Trong tháng sau tổ một vợt mức 10%, tổ hai vợt mức 15% nên cả hai tổ sản xuất đợc 448 chi tiết máy Tính xem trong tháng đầu mỗi tổ sản xuất đợc bao nhiêu chi tiết máy

H

ớng dẫn giải:

Trang 9

- Biết năng suất chung của hai tổ trong tháng đầu là 400 chi tiết Nếu biết đợc

1 trong 2 tổ sẽ tính đợc tổ kia(chọn ẩn)

- Giả sử đã biết năng suất của tháng đầu sẽ tính đợc năng suất của tháng sau

- Tính năng suất của từng tổ tháng sau từ đó lập đợc phơng trình

Từ đó học sinh có thể giải theo 2 cách sau:

Cách 1:

Gọi số chi tiết máy tổ 1 sản xuất trong tháng đầu là x (x nguyên, 0<x<400)

100

15 400

100

10

x

Cách 2:

Gọi số chi tiết máy tổ 1 làm đợc trong tháng đầu là x và số chi tiết máy tổ 2 làm đợc trong tháng đầu là y (x,yN; 0<x,y<400)

Ta lập đợc hệ phơng trình

48 100 15 100 10 400

y x y x

Tóm lại : Với loại toán liên quan đến tỷ số phần trăm, giáo viên cần gợi mở

để học sinh hiểu rõ bản chất và nội dung bài toán để dẫn tới mối liên quan để thiết lập phơng trình

4 Dạng toán về công việc làm chung, làm riêng( Toán qui về đơn vị).

Ví dụ 9:

Hai đội dân công cùng sửa một con mơng hết 24 ngày Mỗi ngày phần việc

của độ 1 làm đợc bằng

2

1

1 phần việc của đội 2 làm đợc Hỏi nếu làm một mình, mỗi đội sẽ sửa xong con mơng đó trong bao nhiêu ngày?

H

ớng dẫn giải

Coi toàn bộ công việc là một đơn vị công việc và biểu thị bởi số 1

Cách 1:

Gọi số ngày đội 2 làm một mình sửa xong con mơng là x (ngày) x>0

Trong 1 ngày đội 2 làm đợc là

x

1 công việc

Trong 1 ngày đội 1 làm đợc

x

1 2

3 công việc

Trong 1 ngày cả 2 đội làm đợc

24

1 công việc

Ta có phơng trình:

24

1 2

1 1

x x

Trang 10

Giải ra ta đợc x = 60

=> Mỗi ngày đội 1 làm đợc

40

1 60 2

3

 công việc

Vậy để sửa xong con mơng đội 1 làm một mình trong 40 ngày

Cách 2:

Gọi số ngày đội 1 làm một mình để sửa xong con mơng là x(ngày) x>0

Số ngày đội 2 làm một mình để sữa xong con mơng là y (ngày) y>0

Ta lập đợc hệ phơng trình

y x

y x

2 3 1

24 1 1 1

Giải hệ tìm đợc x= 40, y= 60

Tóm lại:- ở dạng toán này ta thờng coi toàn bộ công việc là một đơn vị công việc

và biểu thị bởi số 1

- Nắm chắc mối quan hệ giữa các đại lợng nhờ hệ thức:

Công việc = Năng suất x Thời gian

5 Dạng toán về tỷ lệ chia phần (Thêm, bớt, tăng, giảm tỷ số của chúng)

Ví dụ 10:

Có 2 kho dự trữ thóc Kho thứ nhất nhiều hơn kho thứ hai 100 tấn Nếu chuyển từ kho thứ nhất sang kho thứ hai 60 tấn thì lúc đó số thóc ở kho thứ nhất

bằng

13

12

số thóc ở kho thứ hai Tính số thóc ở mỗi kho lúc đầu?

H

ớng dẫn giải

Cách Quá trình Kho I Kho II P.t xây dựng

13

12 60

100   

x

) ( 60 13 60 100

y x

y x

6 Dạng toán có liên quan đến hình học.

Ví dụ 1 và ví dụ 4

Tóm lại:

- Trong dạng toán này học sinh phải nắm chắc và vận dụng linh hoạt các kiến thức hình học

- Chú ý đến điều kiện của ẩn

- Đôi khi cần vẽ hình minh hoạ

7 Dạng toán có nội dung vật lí Hoá học.

Ngày đăng: 13/07/2014, 09:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w