Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 79 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
79
Dung lượng
1,74 MB
Nội dung
Buổi 1: Ôn tập Căn bậc hai - Điều kiện tồn tại và hằng đẳng thức AA = 2 Liên hệ giữa phép nhân ; phép chia và phép khai phơng A- Lí thuyết : 1- Định nghĩa: CBH của một số không âm a là a và - a CBHSH của một số không âm a là a (x= a = ax x 2 0 ( Vớia 0 ) 2- Điều kiện tồn tại : A có nghĩa khi A 0 3- Hằng đẳng thức : AA = 2 = A A 4- Liên hệ giữa phép nhân ; phép chia và phép khai phơng . + Với A 0;0 B ta có BAAB .= +Với A 0;0 > B ta có B A B A = B- Bài tập áp dụng : Bài 1- Tính CBH và CBHSH của 16 ; 0,81 ; 25 4 Giải: CBH của 16 là 16 =4 và - 16 =-4 ; Còn CBHSH của 16 là 16 =4 CBHcủa 0,81 là 9,0 ; CBHSH của 0,81là 0,9 CBH của 25 4 là 5 2 ; CBHSH của 25 4 là 5 2 Bài 2- Tìm x để biểu thức sau có nghĩa : a; 12 +x b; x2 1 c; 1 3 2 x d; d; 32 2 +x e; 2 5 2 x Giải: a; 12 +x có nghĩa khi 2x+1 2 1 0 x Giáo án dạy chiều Toán 9 năm học 2009 - 2010 1 b; x2 1 có nghĩa khi 4 0 02 0 x x x x c; 1 3 2 x có nghĩa khi x 2 -1>0 < >+ > >+ 01 01 01 0)1)(1( x x x xx < > 1 1 x x d; 32 2 +x có nghỉa khi 2x 2 +3 0 Điều này đúng với mọi x.Vậy biểu thức này có nghĩa với mọi x e; 2 5 2 x có nghĩa khi -x 2 -2>0. Điều này vô lí với mọi xVậy biểu thức này vô nghĩa với mọi x Bài 3- Tính (Rút gọn ): a; 2 )21( b; 22 )32()23( + c; 324625 ++ d; 1 12 2 + x xx e; 12 + xx Giải: a; 2 )21( = 1221 = b; 22 )32()23( + = 32432323223 =+=+ c; 324625 ++ = 12321323)13()23( 22 +=++=++ d; 1 1 1 1 )1( 2 = = x x x x e; 12 + xx = 11)11( 2 +=+ xx Bài 4- Giải PT: a; 3+2 5=x b; 32510 2 +=+ xxx c; 155 =+ xx Giải: a; 3+2 5=x (Điều kiện x )0 2 235 ==x 1=x x=1(thoả mãn ) b; 32510 2 +=+ xxx 35 = xx (1) Điều kiện : x -3 Giáo án dạy chiều Toán 9 năm học 2009 - 2010 2 (1) = = xx xx 35 35 1 = x thoả mãn c; 155 =+ xx ĐK: x-5 0 5-x 0 Nên x=5 Với x=5 thì VT=0 vậy nên PT vô nghiệm Bài 5- Tính: a; 80.45 + 4,14.5,2 b; 52.13455 c; 144 25 150 6 23.2300 + Giải: a; 80.45 + 4,14.5,2 = 662,1.520.3 44,1.25400944,1.25400.9 =+= +=+ b; 52.13455 = 1126152.13225 22 == c; 144 25 150 6 23.2300 + = 60 13 230 12 5 5 1 230 144 25 150 6 230 2 =+=+ Bài 6- Rút gọn : a; 22 )1( +aa với a >0 b; 66 64 128 16 ba ba (Vớia<0 ; b 0 ) Giải: a; 22 )1( +aa với a >0 = )1(1 +=+ aaaa vì a>0 b; 66 64 128 16 ba ba (Vớia<0 ; b 0 ) = 22 1 8 1 128 16 266 64 a aba ba == Vì a <0 Bài 7: Rút gọn rồi tính giá trị của biểu thức với x= 0,5: 3 1 )3( )2( 2 2 4 + x x x x ( với x<3) Tại x=0,5 ký duyệt Giải:= 3 54 3 144 3 1 3 )2( 2222 = ++ = + x x x xxx x x x x (Vì x<3) Ngày .tháng9 năm 2009 Thay x=0,5 ta có giá trị của biểu thức = 2,1 35,0 55,0.4 = H ớng dẫn về nhà : Xem lại các dạng bài đã giải ở lớp. Làm thêm bài tập 41- 42b-43 (Trg9;10-SB Giáo án dạy chiều Toán 9 năm học 2009 - 2010 3 Ngày soạn : 17/09/2009 Tuần 2 : Ôn tập về hệ thức lợng trong tam giác vuông . A Lí thuyết : Các hệ thức lợng trong tam giác vuông: 1- a 2 =b 2 +c 2 2- b 2 =a.b' ; c 2 =a.c' 3- h 2 = b'.c' 4- b.c=a.h 5- 222 111 cbh += C B- Bài tập Bài 1: Cho tam giác ABC vuông ở A ;đờng cao AH a; Cho AH=16 cm; BH= 25 cm . Tính AB ; AC ; BC ;CH b; Cho AB =12m ; BH =6m . Tính AH ; AC ; BC ; CH .? Giải Sử dụng hình trên a; áp dụng định lí Pi Ta Go trong tam giác vuông AHB ta có: AB 2 = AH 2 + BH 2 = 15 2 +25 2 = 850 15,29850 = AB Trong tam giác vuông ABC Ta có : AH 2 = BH. CH CH = BH AH 2 = 9 25 15 2 = Vậy BC= BH + CH = 25 + 9 = 34 AC 2 = BC. CH = 34 . 9 Nên AC = 17,5 (cm) b; Xét tam giác vuông AHB ta có : AB 2 = AH 2 + HB 2 39,10612 2222 == HBABAH (m) Xét tam giác vuông ABC có : AH 2 = BH .CH 99,17 6 39,10 22 == BH AH HC (m) BC= BH +CH = 6 +17,99 =23,99 (m) Mặt khác : AB. AC = BC . AH 77,20 12 39;10.99,23. == AB AHBC AC (m) Giáo án dạy chiều Toán 9 năm học 2009 - 2010 A c h b c' b' B H C CC 4 Bài 2: Cạnh huyền của tam giác vuông lớn hơn cạnh góc vuông là 1cm ; tổng hai cạnh góc vuông lớn hơn cạnh huyền 4 cm Hãy tính các cạnh của tam giác vuông này? Giải : Giả sử BC lớn hơn AC là 1 cm C Ta có: BC- AC= 1 Và (AC + AB)- BC =4 Tính : AB; AC ; BC . Từ (AC + AB)- BC =4 Suy ra AB- ( BC- AC )= 4 AB- 1 = 4 Vậy AB = 5 (cm) Nh vậy : =+ = 222 1 BCACAB ACBC +=+ += 222 )1(5 1 ACAC ACBC Giải ra ta có : AC = 12( cm) Và BC = 13 (cm) Bài3: Cho tam giác vuông - Biết tỉ số hai cạnh góc vuông là 3: 4 ; cạnh huyền là 125 cm Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền ? Giải: Ta sử dụng ngay hình trên Theo GT ta có : ACAB AC AB 4 3 4 3 == Theo định lí Pi Ta Go ta có : AB 2 +AC 2 = BC 2 = 125 2 222 125) 4 3 ( =+ ACAC Giải ra : AC = 138,7 cm AB = 104 cm Mặt khác : AB 2 = BH . BC Nên BH = 53,86 125 104 22 == BC AB CH = BC -BH = 125 - 86,53 = 38,47 cm Giáo án dạy chiều Toán 9 năm học 2009 - 2010 5 A B H C Bài 4 : Cho tam giác vuông tại A ; Cạnh AB = 6 cm ; AC = 8 cm . Các phân giác trong và ngoài của góc B cắt đờng AC lần lợt tại M và N Tính các đoạn thẳng AM và AN ? Bài giải:Theo định lí Pi Ta Go ta có : BC = 1086 2222 =+=+ ACAB cm Vì BM là phân giác ABC Nên ta có : MCAM AM BC BCAB MC AM BC AB + = + = Vậy AM = 3 106 8.6 = + cm Vì BN là phân giác ngoài của góc B ta có : 12= + == NA ACNA NA BC AB NC NA BC AB cm Cách khác: Xét tam giác vuông NBM ( Vì hai phân giác BM và BN vuông góc ) Ta có : AB 2 =AM. AN =>AN =AB 2 : AM = 6 2 : 3 = 12 cm Bài 5: Cho tam giác ABC ; Trung tuyến AM ; Đờng cao AH . Cho biết H nằm giữa B và M . AB=15 cm ; AH =12 cm; HC =16 cm a; Tính độ dài các đoạn thẳng BH ; AC b; Chứng tỏ tam giác ABC; Tính độ dài AM bằng cách tính sử dụng DL Pi Ta Go rồi dùng định lí trung tuyến ứng với cạnh huyền của tam giác vuông rồi so sánh kết quả Bài giải : A áp dụng định lí Pi Ta Go cho tam giác vuông AHB ta có: BH 2 = AB 2 - AH 2 =15 2 - 12 2 = 9 2 Vậy BH =9 cm Xét trong tam giác vuông AHC ta có : 15 12 AC 2 = AH 2 +HC 2 = 12 2 +16 2 =20 2 AC= 20 cm 16 b; BC= BH + HC = 9 +16 =25 B C Giáo án dạy chiều Toán 9 năm học 2009 - 2010 N A M B C 6 Vạy BC 2 = 25 2 = 625 H M AC 2 + AB 2 = 20 2 + 15 2 =225 Vậy BC 2 = AC 2 + AB 2 Vậy tam giác ABC vuông ở A Ta có MC =BM = 12,5 cm ;Nên HM= HC -CM = 16- 12,5 = 3,5 cm AM 2 = AH 2 +HM 2 = 12 2 + 3,5 2 =12,5 2 Vậy AM= 12,5 cm Thoã mãn định lí AM = BC : 2 =12,5 cm H ớng dẫn học ở nhà Xem kĩ các bài tập đã làm ở lớp Làm thêm các bài tập sau đây: Bài 1: Cho tam giác ABC vuông ở A ; từ trung điểm D của của AB vẽ DE vuông góc với BC . C/M : EC 2 - EB 2 = AC 2 Bài 2: Biết tỉ số giữa các cạnh góc vuông của một tam giác vuông là 5:6 ; cạnh huyền là 122 cm . Hãy tính độ dài hình chiếu của mỗi cạnh lên cạnh huyền ? Bài 3: Biết tỉ số hai cạnh góc vuông của một tam giác vuông là 3 : 7 ; Đờng cao ứng với cạnh huyền là 42 cm Tính độ dài hình chiếu của các cạnh góc vuông lên cạnh huyền ? Ký duyệt Ngày tháng 09 năm 2009 Giáo án dạy chiều Toán 9 năm học 2009 - 2010 7 Ngày soạn : 15/10/2007 Buổi 3 : Ôn tập về các phép biến đổi căn thức bậc hai A- Lí thuyết cần nắm : Các phép biến đổi căn bậc hai : Đa thừa số ra ngoài dấu căn : - Với A 0 , B 0 Thì BABA = 2 - Với A<0 , B 0 Thì BABA = 2 Đa thừa số vào trong dấu căn : Với A 0 , B 0 Thì A BAB 2 = Với A 0 , B 0 Thì A BAB 2 = Khữ mẩu của biểu thức lấy căn : Với AB 0;0 B Thì B AB B AB B A == 2 Trục căn thức ở mẫu: Với B>0 thì B BA B A = Với B 0; A 2 B thì BA BAC BA C + = )( Với A 0 ; B 0 và A B THì : BA BAC BA C + = )( B- Bài tập : Bài 1) Chứng minh : a, 25549 = VT= VP=== 25255)25( 2 (ĐCC/M) b, Chứng minh : Giáo án dạy chiều Toán 9 năm học 2009 - 2010 8 yx xy yxxyyx = ))(( Với x>0; y>0 BĐVT= VPyx yx yxyx yx yxyxyxyxyx == = + . )(. . . (ĐCC/m) c; Chứng minh : x+ 2 2 )22(42 += xx Với x 2 BĐVP= 2+ x-2 + 2 42 x = x +2 42 x =VT (ĐCC/m) Bài 2: Rút gọn : a;(2 603)53 + = 2.3+ 15615215615.415 =+= b; 2 035)628(352.3352352.4 34.5335232.40248537521240 === = c; (2 yxyx yxyxyxyxyx 26 2346)23)( = +=+ d, 422422 ++ xxxx Với x 2 = 242242 242242)242()242( 442442442442 22 ++= ++=++= +++ xx xxxx xxxx Với 40242 xx ta có Biểu thức = 422242242 =++ xxx Với 420242 < xx Biểu thức = 4422242 =++ xx Bài3:Tìm x a; )(493525 )0:(3525 2 TMxx xDKx == = b; )(6033 )(303 0)33(3 0333.3 )3:(0339 2 tmx tmxx xx xxx xDKxx =++ ==+ =+ =+ = vậy x =3 hoặc x = 6 c; 242)4( 2168 2 2 +=+= +=+ xxxx xxx Giáo án dạy chiều Toán 9 năm học 2009 - 2010 9 Với x-4 40 x Phơng trình trở thành : x- 4 = x+2 => - 4 = 2 vô lí =>PT vô nghiệm Với x- 4 <0 x<4 Phơng trình trở thành: 4- x = x +2 =>x =1 ( thoã mãn ) Vậy PT chỉ có một nghiệm x = 1 d; 5 4 2 4 2 22 = + + xxxx (ĐK: x 2 hoặc x<2) 2(x+ )4(5422422 )4).(4.(5)4(2)4 2222 2222 +=++ +=+ xxxxxx xxxxxxx 4x = 20 x =5 (Thoả mãn) Bài 4: Cho biểu thức : A = x x xx + + 1 22 1 22 1 a; Tìm TXĐ rồi rút gọn biểu thức A b; Tính giá trị của A với x =3 c; Tìm giá trị của x để 2 1 =A Giải: A có nghĩa Khi 1 0 x x A = 1 1 1 1 144 4 1 )22)(22( 2222 + = = = + + ++ x x x x x xx x xx xx b; Với x= 3 ( thoả mãn điều kiện ) nên ta thay vào A= 13 1 1 1 + = + x c; 2 1 =A 1 2 1 1 1 2 1 1 1 == + = + x xx (loại ) Bài 5 : 9101 1 10099 1 32 1 21 10099 1 9998 1 32 1 21 1 =+= ++ + = + + + ++ + + + H ớng dẫn học ở nhà : Xem kĩ các bài tập đã giải ở lớp Làm thêm bài tập 69- 70 - 73(SBT-Tr 13-14) Giáo án dạy chiều Toán 9 năm học 2009 - 2010 10 [...]... 52 (cm Giáo án dạy chiều Toán 9 năm học 20 09 - 2010 19 B 4 H AC2 = BC2 - AB2 =92 - 522 = 29 AC = 29 AH2 = BH CH = 4 .9 =36 = 62 AH = 6 cm Ta có : SinB = AC/BC = 29 / 9 =0, 598 4 Suy ra : B = 360 45' C = 90 0 - 36045' = 530 9 C Bài 2: a; Cho Cos = 5/12 Tính Sin ; Tg ; Cotg ? Ta có Sin2 + Cos2 =1 => Sin2 = 1- (5/12)2 = 144/1 69 Sin = 12/13 Tg = Sin /Cos = 1 Cotg = Tg = 12 / 13 12 = 5 / 12 5 5 12 b;... vuông tại A A Suy ra m 1/2 Vậy m -1/2 và m 1/2 Thì hai đờng thẳng cắt nhau b; Để hai đờng thẳng song song thì a = a' ; b b' suy ra 2 = 2m +1 Giáo án dạy chiều Toán 9 năm học 20 09 - 2010 34 => m = 1/2 và 3k 2k -3 => k -3 Vậy hai đờng thẳng song song khi m =1/2 và k -3 c; Hai đờng thẳng trùng nhau khi a =a' và b = b' suy ra : 2 = 2m +1 => m =1/2 3k = 2k -3 => k =-3 Vậy... rút gọn P b; Tìm a để P dơng c; Tính giá trị của Biểu thức biết a= 9- 4 5 Bài 2: a; So sánh : -11 và 3 197 5 b; Rút gọn : 3 6 3 64(2a 1) + 3 8(1 2a)3 23 (2a 1)3 Giáo án dạy chiều Toán 9 năm học 20 09 - 2010 18 Ngày soạn : 31/10/2007 Buổi 6: Ôn tập chơng I hình học A- Lí thuyết cần nhớ : 1- Các hệ thức liên hệ giữa cạnh và đờng cao trong tam giác vuông 1- a2=b2+c2 A 2- b2=a.b' ; c2=a.c' 3- h2= b'.c' . .CH 99 ,17 6 39, 10 22 == BH AH HC (m) BC= BH +CH = 6 +17 ,99 =23 ,99 (m) Mặt khác : AB. AC = BC . AH 77,20 12 39; 10 .99 ,23. == AB AHBC AC (m) Giáo án dạy chiều Toán 9 năm học 20 09 - 2010 A. (loại ) Bài 5 : 91 01 1 10 099 1 32 1 21 10 099 1 99 98 1 32 1 21 1 =+= ++ + = + + + ++ + + + H ớng dẫn học ở nhà : Xem kĩ các bài tập đã giải ở lớp Làm thêm bài tập 69- 70 - 73(SBT-Tr. AC 2 = BC 2 - AB 2 =9 2 - 295 2 2 = AC = 29 AH 2 = BH. CH = 4 .9 =36 = 6 2 AH = 6 cm Ta có : SinB = AC/BC = 29 / 9 =0, 598 4 Suy ra : B = 36 0 45' C = 90 0 - 36 0 45'