1. Cho ABC vuông tại A. Kẻ đường cao AH. a. Cho AB = 15, AC = 8. Tính BC, AH. b. Cho BC = 9, HC = 4. Tính AB, AC, AH c. Cho HB = 3, HC = 12. Tính AB, AC, BC, AH d. Cho AB = 4, HC = 6. Tính AC, BC, AH. 2. Cho ABC cân tại A. Kẻ hai đường cao AH, BK. Cho AH = 20, BK = 24. Tính độ dài 3 cạnh của ABC. 3. Chu vi hình thoi là 20, hiệu 2 đường chéo là 2. Tính độ dài hai đường chéo và diện tích hình thoi. 4. Cho ABC vuông, kẻ đường cao AH. a. Cmr: AB 2 .CH = AC 2 .BH b. Cmr: AH = BC.sinB.sinC c. Gọi D, E là trung điểm AB, BC. Kẻ DF ⊥ BC. Cmr : BD 2 .FE = DE 2 .FB 5. Cho ABC vuông tại A. Gọi AD, BE, CF là 3 trung tuyến. Cmr: BE 2 + CF 2 = 5AD 2 . 6. Cho ABC có AB = 5 cm, AC = 8 cm, µ 0 A 60= . a. Tính độ dài cạnh BC, diện tích và đường cao AH của ABC. b. Tính bán kính đường tròn nội, ngoại tiếp ABC, độ dài trung tuyến BM của tam giác. c. Tính độ dài phân giác trong AD của ABC. 7. Cho ABC có a = 21, b = 17, c = 10. a. Tính cosA, sinA và diện tích ABC b. Tính h a , m c , R, r của ABC. 8. a. Cho ABC có AB = 7, AC = 8, µ 0 A 120= . Tính cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác. b. Cho ABC có AB = 3, AC = 5, BC = 7. Tính góc A. c. Cho µ 0 A 120= , BC = 7, AB + AC = 8. Tính AB, AC. 9. Cho ABC. Đặt a = BC, b = AC và c = AB. a. Cho a 2 3, b 6 2 ,c 6 2= = + = − . Tính góc A. b. Cho a 2 3, b 2 2 ,c 6 2= = = − . Tính số đo 3 góc. c. Cho a 6, b 2 ,c 3 1= = = − . Tính số đo 3 góc. 10. Cho ABC, kẻ đường cao AH. Cho HA = 12, HB = 4, HC = 6. Tính số đo góc A. 11. Cho $ 0 B 60= , b = 2 7 , c = 4. tính cạnh a, bán kính R và đường cao BH của ABC. 12. Cho hình bình hành ABCD tâm O. a. Cho AB = 5, AD = 8, µ 0 A 60= . Tính độ dài hai đường chéo và diện tích. b. Cho AB = 13, AD = 19, AC = 24. Tính BD. 13. Cho ABC. Chứng minh: a. (b + c)sinA = a(sinB + sinC) b. b 2 – c 2 = a(bcosC – c.cosB) c. a = bcosC + c.cosB d. 2 2 2 2 2 2 c a b tan A.cotB b c a + − = + − e. 2 2 2 a b c cot A cotB cot C R abc + + + + = ÷ 14. Cho ABC có µ 0 A 120= . Chứng minh: b(a 2 – b 2 ) = c(a 2 – c 2 ) 15. Cho ABC có 2BC = AB + AC. Gọi R, r là bán kính đường tròn ngoại, nội tiếp. CMR: a. sinB + sinC = 2sinA b. AB.AC = 6Rr 16. Cho ABC có 3 cạnh là a, b, c. Gọi m a , m b , m c là 3 trung tuyến và G là trọng tâm. a. Cmr: 2 2 2 2 2 2 1 GA GB GC (a b c ) 3 + + = + + b. 2 2 2 2 2 2 a b c 3 m m m (a b c ) 4 + + = + + 17. Giải ABC biết a = 7,1 ; b = 5,3 ; c = 3,2. 18. Cho ΔABC có AB = 2, AC = 3, BC = 4. Gọi D là trung điểm của BC, tính bán kính đường tròn đi qua ba điểm A, B, D. 19. a. Cho ΔABC có A = 120 0 , C = 15 0 , AC = 2. Tính độ dài hai cạnh còn lại b. Cho ΔABC có BC = 8, AB = 3, AC = 7. Lấy điểm D trên BC sao cho BD = 5. Tính AD c. Cho ΔABC có ba cạnh AB= 13, AC= 14, BC= 15. Kẻ AH ⊥ BC, Tính độ dài đoạn BH và HC