1. Trang chủ
  2. » Luận Văn - Báo Cáo

skkn cấp tỉnh vận dụng khoảng cách để giải bài toán tính góc trong hình học không gian tổng hợp giúp học sinh khi học lớp 11 hoàn thành tốt bài tập về góc trong hình học không gian giúp học sinh khi học lớp 12

21 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Vận dụng khoảng cách để giải bài toán tính góc trong hình học không gian tổng hợp, giúp học sinh khi học lớp 11 hoàn thành tốt bài tập về góc trong hình học không gian, giúp học sinh khi học lớp 12 hoàn thành tốt đề thi tốt nghiệp THPT
Tác giả Nguyễn Thị A
Trường học Trường THPT Hậu Lộc 1
Chuyên ngành Toán
Thể loại Sáng kiến kinh nghiệm
Định dạng
Số trang 21
Dung lượng 689,42 KB

Nội dung

Lý do chọn đề tài Phần hình học không gian là phần học khó với học sinh, ngoài việc tổng quan được hình vẽ của bài tập, học sinh còn vận dụng nhiều tư duy, nhiều suy luận lôgic, các phư

Trang 1

1

PHẦN 1 MỞ ĐẦU 1.1 Lý do chọn đề tài

Phần hình học không gian là phần học khó với học sinh, ngoài việc tổng quan được hình vẽ của bài tập, học sinh còn vận dụng nhiều tư duy, nhiều suy luận lôgic, các phương pháp luận để hình thành nên cách giải của mỗi bài toán

Trong quá trình dạy học môn toán tôi thấy điều quan trọng là dạy cho học sinh phương pháp tư duy khoa học và logic, học sinh phải có nền tảng kiến thức bộ môn vững vàng và biết vận dụng kiến thức liên môn để giải quyết vấn đề trong học tập và trong thực tế cuộc sống

Bài toán “Góc - Khoảng cách” trong phân môn hình học lớp 11 là một chuyên đề khó đối với học sinh và thường hay gặp trong kỳ thi quốc gia, kỳ thi tốt nghiệp THPT Để học tốt bài này các em cần có kiến thức vững chắc phần quan hệ song song và quan hệ vuông góc trong không gian và nắm chắc các hệ thức lượng trong tam giác, các tính chất của các hình cơ bản

Trước yêu cầu ngặt về thời gian của đề trắc nghiệm, yêu cầu cần được tiếp thu của học sinh, qua thời gian giảng dạy và tìm hiểu tôi đã lựa chọn đề tài này để hoàn thiện hơn kinh nghiệm của mình, là tư liệu để đồng nghiệp có thể tham khảo và trên hết là

để học sinh có tài liệu để mở rộng kiến thức, hoàn thành tốt các đề thi THPT quốc

gia Trong khuôn khổ của đề tài Sáng kiến kinh nghiệm, tôi chọn đề tài: “Vận dụng khoảng cách để giải bài toán tính góc trong hình học không gian tổng hợp, giúp học sinh khi học lớp 11 hoàn thành tốt bài tập về góc trong hình học không gian, giúp học sinh khi học lớp 12 hoàn thành tốt đề thi tốt nghiệp THPT” Trong quá

trình dạy học bài toán góc - khoảng cách, tôi đã áp dụng giải pháp, sau khi áp dụng tôi thấy đây là một giải pháp hay, hiệu quả trong dạy học bài toán “Góc - Khoảng cách” trong phân môn hình học 11 Học sinh hứng thú khi tiếp nhận và vận dụng thành thạo vào giải bài tập, từ đó kết quả học tập của học sinh ngày càng được nâng cao Phát triển tư duy logíc trong suốt quá trình học tập, học sinh thấy được tính đa dạng trong việc tư duy giải toán

1.2 Mục đích nghiên cứu

Như đã nói ở trên, mục đích nghiên cứu của đề tài nhằm hoàn thiện hơn kinh nghiệm của bản thân, là tư liệu để đồng nghiệp có thể tham khảo và trên hết là để học sinh có tài liệu để mở rộng kiến thức, hoàn thành tốt đề thi TNTHPT quốc gia

Từ đây, có thể hình thành cho học sinh tư duy liên môn, thấy được các mối quan

hệ liên môn giữa các môn học mà lâu nay học sinh không để ý tới, từ đó giúp học sinh có kỹ năng tốt hơn để giải quyết tốt các bài toán ở môn khác, ở thực tiễn đời sống sau này

Trên cơ sở nghiên cứu lý luận và thực trạng của việc dạy và học tính góc và khoảng cách giúp giáo viên xây dựng và truyền đạt cho học sinh sơ đồ tư duy từ kiến thức cơ bản đến bài toán thường gặp và từ đó học sinh dễ dàng nắm chắc kiến thức

sâu hơn, vận dụng thành thạo hơn trong giải bài tập

1.3 Đối tượng nghiên cứu của đề tài

Trang 2

2

- Học sinh lớp 11A3, 11A7, Trường THPT Hậu Lộc 1

- Mục tiêu đạt được của chuyên đề tính góc - khoảng cách được giới thiệu trong sách

giáo khoa Hình học lớp 11

- Các bài tập, công thức được giới thiệu trong chương trình THPT

1.4 Các phương pháp nghiên cứu của đề tài

+ Phương pháp thống kê, thu thập số liệu

+ Phương pháp nghiên cứu, xây dựng cơ sở lý thuyết: Vì chưa có một đề tài nghiên cứu hoàn chỉnh, chuẩn kiến thức nên tôi đã tìm hiểu qua nội dung của các bài toán, tham khảo ở một số ý tưởng của một số tác giả và bằng sự hiểu biết của bản thân để hình thành nên phương pháp luận, xây dựng thành cơ sở lý thuyết để học sinh học tập

- Thực hiện dạy tại lớp 11A3,11A7, đối chứng với các phương pháp thường gặp khác

- Thống kê phân tích, tổng hợp kết quả đạt được sau khi áp dụng

1.5 Những điểm mới của đề tài

- Hình thành sơ đồ tư duy từ kiến thức cơ bản đến bài toán thường gặp và từ đó

vận dụng thành thạo hơn trong giải bài tập

PHẦN 2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận của sáng kiến kinh nghiệm

- Học sinh nắm chắc kiến thức phần quan hệ song song và quan hệ vuông góc trong không gian

- Học sinh nắm chắc các hệ thức lượng trong tam giác, các tính chất của các hình

cơ bản

Trong khuôn khổ giới hạn của đề tài, tôi chỉ trình bày những kiến thức liên quan đến đối tượng nghiên cứu của đề tài

2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm

- Khi tính góc học sinh thường gặp khó khăn trong việc xác định hình chiếu của đường thẳng trên mặt phẳng, xác định mặt phẳng vuông góc với giao tuyến của hai mặt phẳng và vận dụng các hệ thức lượng giác để tính, học sinh thường áp dụng ở dạng thuần túy Do đó khi gặp một số bài phức tạp cần hướng dẫn cho học sinh vận dụng một cách linh hoạt, đưa về áp dụng các bài toán thường gặp thì mới có hiệu quả

- Tư duy của học sinh còn nhiều hạn chế, các em chưa hiểu rõ mối liên hệ giữa góc giữa hai đường thẳng và góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng, cần phát triển tư duy logic trong vận dụng khoảng cách để đưa về bài toán thường gặp

2.3 Các sáng kiến kinh nghiệm hoặc các giải pháp đã sử dụng để giải quyết vấn đề

2.3.1 Vận dụng khoảng cách để tính góc giữa đường thẳng và mặt phẳng 2.3.1.1 Kiến thức cơ bản

Phương pháp chung:

Trang 3

3

* Góc giữa đường thẳng d và mặt phẳng ( )P là góc giữa d và hình chiếu của nó

trên mặt phẳng ( )P

Gọi  là góc giữa đường thẳng d và mặt phẳng ( )P thì 0     90

Bước 1: Tìm giao điểm của d và ( )P , gọi là điểm O

Bước 2: Trên d chọn một điểm M khác O , dựng MK ⊥( )P tại K Suy ra OK là hình chiếu vuông góc của d trên mặt phẳng ( )P

Bước 3: Vậy góc giữa đường thẳng d và mặt phẳng ( )P là góc MOK

* Nếu khi xác định góc giữa đường thẳng d và mặt phẳng ( )P khó quá (không chọn dược điểm M để dựng MK ⊥( )P , ta sử dụng công thức sau đây:

* Công thức tính góc theo khoảng cách: ( ,( ) )

K

Trong quá trình chữa bài tập về tính góc giữa một đường thẳng và một mặt phẳng; góc giữa hai mặt phẳng mà tính bằng cách thuần túy gặp khó khăn, tôi thường vận dụng khoảng cách để quy việc tính góc về tính khoảng cách từ một điểm

M nằm trên đường thẳng đó đến mặt phẳng; khoảng cách từ một điểm M nằm trên

mặt phẳng này đến mặt phẳng kia và khoảng cách đến giao tuyến của hai mặt phẳng

Hướng dẫn cho học sinh phát hiện cách chọn điểm M để việc tính khoảng cách

được dễ dàng

2.3.1.2 Các bài toán thường gặp

Bài 1: Cho hình chóp .S ABC có đáy ABC là tam giác đều cạnh a, SA⊥(ABC)

SA=a 6 Tính góc giữa đường thẳng AB và mặt phẳng (SBC )

Phân tích hướng dẫn giải

- Dạng toán: Đây là dạng toán tính góc giữa cạnh đáy và một mặt bên không vuông

góc với mặt đáy của hình chóp

- Hướng giải:

B1: Xác định hình chiếu của A lên mặt phẳng (SBC)là điểm H

Trang 4

Từ đó, ta có thể giải bài toán cụ thể như sau:

Dựng ADBC tại D , khi đó D là trung điểm của BC

Gọi K là trung điểm của AB Khi đó: ( (SAB) (, ABC) )=(HK SK, )=SKH =  60

Gọi  là góc giữa đường thẳng AC và mặt phẳng (SAB )

C

B D H

Trang 5

5

J a S

K I

H C

Vậy góc giữa đường thẳng AC và mặt phẳng (SAB bằng 60 )

Bài 3: (Đề thi thử THPTGQ năm học 2021 - 2022, trường THPT Nguyễn Viết Xuân - Vĩnh Phúc) Cho hình hộp ABCD A B C D     có đáy ABCD là hình vuông

cạnh a , tâm O Hình chiếu vuông góc của A lên mặt phẳng (ABCD trùng với O )Biết tam giác AA C vuông cân tại A Tính sin của góc  giữa đường thẳng A D 

Phân tích, hướng dẫn giải

1 Dạng toán: Đây là dạng toán tính góc giữa đường thẳng và mặt phẳng

Phương pháp: Cách tính góc giữa đường thẳng a và mặt phẳng ( )P

+) Xác định giao điểm của đường thẳng a và mặt phẳng ( )P Giả sử I = a ( )P

+) Tính khoảng cách từ điểm M thuộc a đến ( )P và tính độ dài đoạn MI

+) Gọi  là góc giữa đường thẳng a và mặt phẳng ( )P Ta có ( ,( ) )

Trang 6

6

( ; ) ( ;( ) ) 2 ( ;( ) )

d DABB A  =d D ABB A  = d O ABB A 

Gọi I là trung điểm của AB ABOI , mà ABA O  AB⊥(A IO )

B2: Trong mp(A IO ), kẻ OHA I OH ⊥(ABB A )d O ABB A( ;(  ) )=OH

B3: Ta có A= A D (ABB A ) Gọi  là góc giữa đường thẳng A D  và mặt

phẳng (ABB A  , suy ra: ) ( ,( ) )

( ; ) ( ;( ) ) 2 ( ;( ) )

d DABB A  =d D ABB A  = d O ABB A 

 Gọi I là trung điểm của AB ABOI , mặt khác ABA O  AB⊥(A IO )

Trang 7

7

giác vuông tại A , ABC =30 Tam giác SBC đều cạnh a và nằm trong mặt phẳng

vuông góc với đáy Tính cosin của góc giữa đường thẳng SC và mặt phẳng (SAB )

Gọi H là trung điểm BC , suy ra SH ⊥(ABC) Mặt khác ( ( ) )

Bài 1: (Đề thi thử THPTGQ lần 1, trường THPT Thanh Chương 1 - Nghệ An)

Cho hình chóp có đáy là tam giác vuông tại A, AB=4a, AC =3a Biết

SA= a , SAB =30 và (SAB) (⊥ ABC) Sin của góc giữa đường thẳng SA với

Trang 8

5

a HK

Trang 9

I

N M

C

A

B

D S

Trong tam giác SAI vuông cân tại A có: AI =SA= a

Trong tam giác vuông ABM , có:

Bài 3: (Chuyên Lam Sơn) Cho hình chóp S ABCD có đáy ABCD là hình thoi

cạnh a Tam giác ABC là tam giác đều, hình chiếu vuông góc của đỉnh S trên mặt

phẳng (ABCD trùng với trọng tâm của tam giác ABC Góc giữa đường thẳng SD )

Trang 10

Gọi G là trọng tâm ABC , suy ra G là hình chiếu của S trên mp(ABCD )

Kẻ đường trung tuyến CG cắt AB tại, suy ra CMAB CM, ⊥CD

Ta có CDGH (vì CDCM CD, ⊥SG ) (1)

Từ G kẻ GHSC (2)

Từ (1) và (2) suy ra GH ⊥(SCD) suy ra H là hình chiếu của G trên (SCD )

Ta có góc giữa SD và mp(ABCD là góc ) SDG =30 nên ta có tanSDG SG

Trang 11

Bài 4: (Chuyên Vĩnh Phúc - lần 2) Cho hình chóp S ABC có đáy ABC là tam giác

đều cạnh a, SA vuông góc với mặt phẳng (ABC Góc giữa đường thẳng SB và )

mặt phẳng (ABC bằng 60 Gọi M là trung điểm của cạnh AB Góc giữa đường )

 Vì SA⊥(ABC) ABlà hình chiếu của SB lên mặt phẳng (ABC )

Trang 12

O A

B S

C D

K H

Gọi O là trung điểm của AC Theo bài ra 30 120

30

ABC BAC

Trang 13

Bài 6: Cho hình chóp S ABCD có đáy ABCD là nửa lục giác đều và .

Ab=BC=CD= Hai mặt phẳng a (SAC và ) (SBD cùng vuông góc với mặt phẳng ) (ABCD , góc giữa SC) và (ABCD bằng ) 60 Tính sin góc giữa đường thẳng SC và 0

Gọi I là giao của AC và BD , vì mặt phẳng (SAC và ) (SBD cùng vuông góc với )mặt phẳng (ABCD)SI ⊥(ABCD) Góc giữa SC và ABCD là góc SCI =60o

Có ABCD là nửa lục giác đều nên có

Trang 14

14

2 2 2 3

.3

a IK

Bước 1: Tìm giao tuyến của hai mặt phẳng, gọi là a=( ) ( )PQ

Bước 2: Tìm hai đường thẳng ,d d lần lượt nằm trong hai mặt phẳng ( )P , ( )Q sao

cho chúng cùng vuông góc với giao tuyến a tại một điểm

Bước 3: Khi đó góc giữa 2 mặt phẳng ( )P và ( )Q là góc giữa hai đường thẳng

,

d d

a P

Q

d' d

* Một số trường hợp thường gặp:

Trường hợp 1: Tứ diện (hình chóp) ABCD có hai tam giác ACD và BCD có chung cạnh đáy CD Gọi H là trung điểm của CD , thì góc giữa hai mặt phẳng (ACD và ) (BCD là góc AHB )

Trang 15

15

H C

D

A B

Trường hợp 2: Tứ diện (hình chóp) ABCD có hai tam giác ACD và BCD bằng

nhau có chung cạnh đáy CD Dựng AHCDBHCD Vậy góc giữa hai mặt phẳng (ACD và ) (BCD là góc AHB )

H C

D

A B

Trường hợp 3: Khi xác định góc giữa hai mặt phẳng quá khó, ta nên sử dụng công thức sau:

H

M

a P

Q

Công thức tính góc theo khoảng cách: ( ( ) )

,sin

Trường hợp 4: Có thể tìm góc giữa 2 mặt phẳng bằng công thức S =S.cos

Trường hợp 5: Tìm hai đường thẳng ,d d lần lượt vuông góc với hai mặt phẳng ( )P

Trang 16

16

và ( )Q Góc giữa 2 mặt phẳng là góc giữa d và d 

2.3.2.2 Bài tập mẫu

Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 5a , cạnh bên SA=10a

và vuông góc với mặt phẳng đáy Gọi M là trung điểm cạnh SD Sin của góc tạo bởi

2.3.2.3 Bài tập tương tự phát triển:

Bài 1 Cho hình chóp S ABC có đáy là tam giác vuông tại A với AB=a AC, =2a Mặt phẳng (SBC vuông góc với mặt phẳng ) (ABC Mặt phẳng () SAB),(SAC cùng )tạo với mặt phẳng (ABC một góc bằng 60 Gọi  là góc giữa hai mặt phẳng )(SAB và ) (SBC Tính sin) 

Trang 17

Kẻ HIAB I( AB HJ), ⊥ AC J( AC) Dễ thấy HIACHJAB (vì ABC vuông tại A ) nên AIHJ là hình bình hành

Có HIABSHAB (vì SH ⊥(ABC)nên AB⊥(SHI)

 góc giữa (SAB và () ABC là góc ) SIH =60  Tương tự thì SJH =60 Kẻ

TK

Trang 18

Kéo dài A K  và AC cắt nhau tại E , AI cắt A B  tại F

Gọi M là hình chiếu vuông góc của A lên BE , D là hình chiếu vuông góc của A lên A M Ta có BE A A BE AD

Trang 19

B A

d A

K

a

A B

Bài 4: (Sở Ninh Bình) Cho khối chóp S ABCD có đáy ABCD là hình vuông cạnh

a, cạnh SA vuông góc với đáy Gọi M , N lần lượt là trung điểm của các cạnh BC ,

SD ,  là góc giữa đường thẳng MN và (SAC Giá trị tan)  là

Bài 5: (Đại Học Hà Tĩnh - 2022) Cho hình chóp S ABC có đáy ABC là tam giác

vuông cân tại B AB, =a SA, ⊥ AB SC, ⊥BC, SB=2a Gọi M N, lần lượt là trung điểm SA BC, và  là góc giữa MN với (ABC Tính ) cos

Trang 20

- Tỉ lệ phân loại bài kiểm tra sau khi dạy xong phương pháp bằng cách dạy trên

Việc vận dụng giải pháp “Vận dụng khoảng cách để giải bài toán tính góc trong hình học không gian tổng hợp, giúp học sinh khi học lớp 11 hoàn thành tốt bài tập về góc trong hình học không gian, giúp học sinh khi học lớp 12 hoàn thành tốt đề thi tốt nghiệp THPT” giải quyết được khó khăn trong bài toán tính góc giữa

đường thẳng và mặt phẳng, góc giữa hai mặt phẳng, tạo hứng thú và làm tăng hiệu quả học tập của học sinh Phát triển tư duy toán học, giúp học sinh hình thành phương pháp tư duy đa dạng và chặt chẽ

Trên đây là một giải pháp trong phần tính góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng ở chương trình hình học lớp 11, phần này còn phải sử dụng kiến thức liên môn để giải quyết Trong quá trình giảng dạy, cần luôn sử dụng linh hoạt kiến thức khác để giải quyết vấn đề triệt để và hiệu quả nhất

3.2 Kiến nghị

Đối với giáo viên: cần phân biệt rõ giữa các phương pháp, kĩ thuật dạy học để tránh nhầm lẫn Đồng thời không ngừng tìm tòi tài liệu và học hỏi đồng nghiệp về phương pháp để hoàn thiện mình Đặc biệt là các giáo viên trẻ

Khi vận dụng mỗi phương pháp cần phải xem tính phù hợp của nó với: nội dung kiến thức bài học, đối tượng học sinh, cơ sở vật chất Kinh nghiệm cho thấy nếu chỉ vận dụng đơn thuần một phương pháp thì hiệu quả khó có thể viên mãn Chúng ta nên kết hợp giữa các phương pháp một cách linh hoạt cùng với vận dụng kiến thức liên môn và sử dụng tốt đồ dùng dạy học sẽ là chìa khóa của một tiết dạy tốt góp phần nâng cao chất lượng giảng dạy

Trong một thời gian không dài, áp dụng trong đơn vị kiến thức không lớn trong chương trình Toán THPT chắc chắn không tránh khỏi thiếu sót Rất mong các nhà quản lý, các đồng nghiệp đóng góp ý kiến để tôi rút kinh nghiệm để việc nghiên cứu, triển khai các đề tài sau mang lại hiệu quả cao hơn Tôi xin chân thành cảm ơn!

Trang 21

21

XÁC NHẬN CỦA Thanh Hóa, ngày 25 tháng 05 năm 2024

THỦ TRƯỞNG ĐƠN VỊ Tôi xin cam đoan, đây là SKKN của tôi viết, không sao chép nội dung của người khác

Người viết sáng kiến

Trần Thị Hiếu

Ngày đăng: 16/06/2024, 06:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w