1. Trang chủ
  2. » Luận Văn - Báo Cáo

bài tập lớn trí tuệ nhân tạo nâng cao đề tài dự đoán nhiệt độ của thành phố

11 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Dự Đoán Nhiệt Độ Của Thành Phố
Tác giả Nguyễn Duy Anh, Bùi Tuấn Minh, Bùi Tiến Đạt
Người hướng dẫn Nguyễn Thị Kim Ngân
Trường học Trường Đại Học Thủy Lợi
Chuyên ngành Công Nghệ Thông Tin
Thể loại bài tập lớn
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 11
Dung lượng 1,58 MB

Nội dung

Nếu ký tự đầu tiên có mức độ quan trọng cao, mô hình sẽ học để không cập nhật trạng thái ẩn sau lần quan sát đầu tiênb.. Học cách bỏ qua những quan sát tạm thời không liên quan, cũng như

Trang 1

TRƯỜNG ĐẠI HỌC THỦY LỢI

KHOA CÔNG NGHỆ THÔNG TIN

BÀI TẬP LỚN

HỌC PHẦN: TRÍ TUỆ NHÂN TẠO NÂNG CAO

ĐỀ TÀI: Dự Đoán Nhiệt Độ Của Thành Phố

Giáo viên hướng dẫn: Nguyễn Thị Kim Ngân Học viên thực hiện:

Nguyễn Duy Anh - 2051060385 – 62TH1 Bùi Tuấn Minh – 2051063681 – 62TH1 Bùi Tiến Đạt – 2051063915 – 62TH1

Hà Nội, năm 2023 Phần 1: Lý thuyết

Trang 2

1 Mạng nơ-ron hồi tiếp (RNN):

Thời điểm t tương ứng với bước t trong một vòng lặp Giả sử, tại bước thời gian t ta có:

 Đầu vào:

 Ht Rn x h là biến ẩn tại bước thời gian t của chuỗi ∈

 Đầu ra tại bước thời gian t:

2 Nút hồi tiếp có cổng (GRU):

Trang 3

nào nên cập nhật và khi nào nên xóa trạng thái ẩn

a Nếu ký tự đầu tiên có mức độ quan trọng cao, mô hình sẽ học để không cập nhật

trạng thái ẩn sau lần quan sát đầu tiên

b Học cách bỏ qua những quan sát tạm thời không liên quan, cũng như cách xóa

trạng thái ẩn khi cần thiết

c Một ô nhớ GRU có 2 cổng: Cổng xóa, cổng cập nhật

d Cổng xóa cho phép kiểm soát bao nhiêu phần của trạng thái trước đây được giữ

lại:

e Cổng cập nhật cho phép kiểm soát bao nhiêu phần của trạng thái mới sẽ giống

trạng thái cũ:

*Hoạt động của Cổng Xóa:

Để giảm ảnh hưởng của các trạng thái trước đó, ta nhân với theo từng phần tử

 Nếu các phần tử của có giá trị gần với 1 , kết quả sẽ giống RNN thông thường

 Nếu tất cả các phần tử của gần với 0 , trạng thái ẩn sẽ là đầu ra của một perceptron đa tầng với đầu vào là Bất kỳ trạng thái ẩn nào tồn tại trước đó đều được đặt lại về giá trị mặc định

Tại đây , nó được gọi là trạng thái ẩn tiềm năng:

Trang 4

*Hoạt động của Cổng Cập Nhật:

Cổng Cập nhật xác định mức độ giống nhau giữa trạng thái mới và trạZng thái

cũ , cũng như mức độ trạng thái ẩn tiềm năng được sử dụng:

 Nếu = 1, chúng ta giữ lại trạng thái cũ Thông tin từ được bỏ qua, tương đương với việc bỏ qua bước thời gian t trong chuỗi phụ thuộc

 Nếu gần 0, trạng thái ẩn sẽ gần với trạng thái ẩn tiềm năng

*Tính chất của GRU:

Các mạng GRU có hai tính chất nổi bật sau:

 Cổng xóa giúp nắm bắt các phụ thuộc ngắn hạn trong chuỗi thời gian

 Cổng cập nhật giúp nắm bắt các phụ thuộc dài hạn trong chuỗi thời gian

3 Bộ nhớ ngắn hạn dài (LSTM):

*Bộ nhớ Ngắn hạn Dài (LSTM):

Khi nào cần nhớ và khi nào nên bỏ qua đầu vào trong trạng thái tiềm ẩn? Mạng LSTM được thiết kế gồm 3 cổng:

 Cổng đầu ra (ouput gate): để đọc các thông tin từ ô nhớ

 Cổng đầu vào (input gate): để quyết định khi nào cần ghi dữ liệu vào ô nhớ

 Cổng quên (forget gate): để thiết lập lại nội dung chứa trong ô nhớ

 , và được xử lý bởi một tầng kết nối đầy đủ và một hàm kích hoạt sigmoid để tính toán các giá trị của các cổng

*Cổng đầu vào, Cổng quên, Cổng đầu ra

Giả sử có h nút ẩn, mỗi minibatch có kích thước n và kích thước đầu vào là d

Trang 5

*Ô nhớ Tiềm năng:

*Ô nhớ

điều chỉnh lượng dữ liệu mới được lấy vào thông qua

chỉ định lượng thông tin cũ cần giữ lại trong ô nhớ

Nếu xấp xỉ bằng 1 và xấp xỉ bằng 0 , thì giá trị ô nhớ trong quá khứ sẽ được lưu lại qua thời gian và truyền tới bước thời gian hiện tại

 Thiết kế này nhằm giảm bớt sự tiêu biến gradient , nắm bắt các phụ thuộc dài hạn trong chuỗi thời gian tốt hơn

 Trạng thái ẩn

Giá trị của luôn nằm trong khoảng (− 1 , 1 )

 Nếu giá trị của cổng đầu ra là 1 , toàn bộ thông tin trong ô nhớ được đưa tới bộ dự đoán

 Nếu giá trị của cổng đầu ra là 0 , tất cả các thông tin trong ô nhớ được giữ

Trang 6

Phần 2: Ứng dụng trong thực tế

1 .Mô tả bài toán

- Tên bài toán: Dự Đoán Nhiệt Độ Của Thành Phố

- Mục đích của bài toán: Sử dụng thuật toán mạng No ron hồi tiếp để dự đoán nhiệt

độ của thành phố Jena Sử dụng bộ dữ liệu chuỗi thời gian Jena Climate Dataset để train, test

- Input: Mảng dữ liệu 2 chiều gồm các yếu tố đánh giá nhiệt độ

- Ouput: Nhiệt độ của thành phố sau 10 phút

- Tóm tắt công việc thực hiện của bài toán:

+ Đọc dữ liệu từ file CSV

+ Tạo các tập dữ liệu liên tục

+ Chia dữ liệu train theo tỷ lệ 80% train, 20% test

+ Chia dữ liệu của 80% train được chia sang thành 90% train và 10% validation + Sử dụng RNN (Convolutional Neural Network), GRU, và LSTM để giải quyết bài toán

2 Mô tả tập dữ liệu của bài toán

- Dữ liệu gồm những chiều thông tin:

Bộ dữ liệu gồm có:

p (mbar) : Đơn vị áp suất lấy từ SI pascal được sử dụng để định lượng áp suất bên trong Các báo cáo khí tượng thường nêu

VPmax (mbar): Áp suất hơi bão hòa

VPact (mbar): Áp suất hơi

VPdef (mbar): Thâm hụt áp suất hơi

sh (g/kg): độ ẩm cụ thể H2OC (mmol/mol): nồng độ hơi nước

rho (g/m ** 3): kín gió

Trang 7

wv (m/s): Tốc độ gió max

T (degC): Nhiệt độ đo bằng độ C

- Có: 420551 mẫu dữ liệu

- Mô tả nhãn lớp của dữ liệu: Nhãn là nhiệt độ của thành phố cập nhật sau 10 phút

- Mô tả ma trận dữ liệu (X), nhãn lớp (Y):

Ma trận dữ liệu (X) gồm p(mbar), VPmax (mbar), VPact (mbar), VPdef (mbar), sh (g/kg), rho (g/m ** 3), wv (m/s), T (degC)

Nhãn lớp (Y): T (degC) sau 10 phút

- Chia tập dữ liệu thành 3 phần:

+ Chia dữ liệu train theo tỷ lệ 80% train, 20% test

+ Chia dữ liệu của 80% train được chia sang thành 90% train và 10% validation

3 Thiết kế mô hình

- Trình bày thiết kế mạng nơ ron tương ứng với các phương pháp RNN, GRU, LSTM để thực hiện bài toán

- RNN:

- model= Sequential()

- model.add(SimpleRNN(120, activation='relu',

kernel_initializer='he_normal',

input_shape X_train=( shape[1], X_train.shape[ ])))2

- model.add(Dense(120, activation='relu',

kernel_initializer='he_normal'))

- model.add(Dense(32, activation='relu',

kernel_initializer='he_normal'))

- model.add(Dense( ))1

Trang 8

- GRU:

- model= Sequential()

- model.add(GRU(170, activation='relu', kernel_initializer='he_normal',

input_shape X_train=( shape[1], X_train.shape[ ])))2

- model.add(Dropout(0.3))

- model.add(Dense(170, activation='relu', kernel_initializer='he_normal'))

- model.add(BatchNormalization())

- model.add(Dropout(0.3))

- model.add(Dense(100, activation='relu', kernel_initializer='he_normal'))

- model.add(BatchNormalization())

- model.add(Dropout(0.3))

- model.add(Dense(32, activation='relu', kernel_initializer='he_normal'))

- model.add(Dense( ))1

Trang 9

- LSTM:

- model= Sequential()

- model.add(LSTM(120, activation='relu',

kernel_initializer='he_normal',

input_shape X_train=( shape[1], X_train.shape[ ])))2

- model.add(Dense(120, activation='relu',

kernel_initializer='he_normal'))

- model.add(Dense(32, activation='relu',

kernel_initializer='he_normal'))

- model.add(Dense( ))1

- model.compile(optimizer='adam', loss='mse', metrics=['mae'])

- model.fit(X_train y_train epochs, , =10, batch_size=128, verbose= , validation_data X_val y_val=( , ))

Trang 10

4 Kết quả thực nghiệm

- So sánh chất lượng của các mô hình RNN, GRU, LSTM trên tập test

- RNN đạt kết quả R2 cao nhất:

R2 score: 0.9863381511565955

MAE: 0.48670572

MSE: 0.9702317

RMSE: 0.9850034

- LSTM đạt kết quả R2 cao thứ nhì:

R2 score: 0.9775396814770307

MAE: 0.41473407

MSE: 1.5950778

RMSE: 1.2629639

- GRU đạt kết quả tương đối:

R2 score: 0.961571848187065

MAE: 1.2361729

MSE: 2.7290752

RMSE: 1.6519912

Trang 11

-Kết luận

Tóm lược nội dung bài tập lớn đã làm được:

+ Hiểu Tổng Quan Về Học Sâu

+ Hiểu Được Vai Trò Và Cách Hoạt Động Của RNN, GRU Và LSTM + Tiến Hành Thực Nghiệm Trên Bài Toán Thực Tế

Tài liệu tham khảo

- Các tài liệu được tham khảo trong báo cáo:

Slide bài giảng môn Học Sâu, trường Đại Học Thủy Lợi

Ngày đăng: 16/05/2024, 16:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w