1. Trang chủ
  2. » Luận Văn - Báo Cáo

tìm hiểu về ứng dụng của tích phân xác định trong việc tìm thể tích vật thể tròn xoay quanh trục ox oy bằng cách dùng phân hoạch trên trục oy

23 8 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Tìm hiểu về ứng dụng của tích phân xác định trong việc tìm thể tích vật thể tròn xoay quanh trục Ox, Oy bằng cách dùng phân hoạch trên trục Oy
Tác giả Bùi Hoàng Cung, Phan Minh Long, Phan Chí Kiên, Lê Tài Danh, Vũ Lê Hà Phương, Nguyễn Đỗ Chí Hiếu
Người hướng dẫn Lê Nguyễn Hạnh Vy
Trường học Đại học Quốc gia TPHCM, Trường Đại học Bách khoa
Chuyên ngành Giải tích 1
Thể loại Bài tập lớn
Thành phố Thành phố Hồ Chí Minh
Định dạng
Số trang 23
Dung lượng 1,65 MB

Nội dung

Để đáp ứng nhu cầu này, nhiều ứng dụng tính toán thông minh đã xuất hiện, trong đó, Matlab là một trong những ứng dụng nổi bật nhờ tính linh hoạt và đa dạng của nó.. Tuy nhiên, qua hơn 5

Trang 1

ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC BÁCH KHOA

BÁO CÁO BÀI TẬP LỚN

GIẢI TÍCH 1

Giáo viên hướng dẫn: Lê Nguyễn Hạnh Vy

Lớp: L25 Nhóm thực hiện: 15

DANH SÁCH THÀNH VIÊN NHÓM

Trang 3

I MỤC LỤC

I MỤC LỤC 3

II LỜI MỞ ĐẦU 5

1 Đề tài 7

2 Yêu cầu 7

3 Nhiệm vụ 7

4 Cơ sở lí thuyết 8

5 Code chương trình 9

6 Ví dụ minh họa 17

IV KẾT LUẬN 21

V TÀI LIỆU THAM KHẢO 22

Trang 5

II LỜI MỞ ĐẦU

Trong môi trường học tập, nghiên cứu và ứng dụng thực tế, ngày nay có nhiều phương pháp tính toán phức tạp phát triển nhờ sự tiến bộ của khoa học và công nghệ Để đáp ứng nhu cầu này, nhiều ứng dụng tính toán thông minh đã xuất hiện, trong đó, Matlab là một trong những ứng dụng nổi bật nhờ tính linh hoạt

và đa dạng của nó

Matlab được phát triển từ những năm 1970, ban đầu chỉ có chức năng cung cấp môi trường tính toán số và lập trình Tuy nhiên, qua hơn 50 năm phát triển, Matlab đã trở thành một công cụ mạnh mẽ, cung cấp nhiều tính năng toàn diện như tính toán số với ma trận, vẽ đồ thị hàm số và biểu đồ thông tin, thực hiện thuật toán, tạo giao diện người dùng và liên kết với các chương trình máy tính viết bằng nhiều ngôn ngữ lập trình khác

Sự đơn giản, dễ hiểu và dễ sử dụng của giao diện Matlab đã thu hút không chỉ sinh viên và nghiên cứu sinh đại học, mà còn các chuyên gia, tiến sĩ và thạc sĩ toán học Hiện nay, Matlab được sử dụng rộng rãi trong các lĩnh vực như cơ khí, hóa học, vật lý và kinh tế

Với hơn 3 triệu người dùng, Matlab đã khẳng định được sự ưu việt của mình trong việc hỗ trợ học tập, nghiên cứu và giảng dạy Đối với người dùng, Matlab mang lại sự tiện lợi và hiệu quả trong việc giải quyết các bài toán phức tạp Với những tính năng đa dạng và khả năng tùy chỉnh cao, Matlab là một công cụ mạnh mẽ để khám phá và khai thác tiềm năng của tính toán trong các lĩnh vực khác nhau

Trang 7

III NỘI DUNG

Câu 3: Đưa ra ít nhất 4 ví dụ cho:

❖ Dạng bài toán cho hàm cụ thể, xác định trong miền giới hạn bởi x=f(x), x=0, a≤y≤b và miền giới hạn bởi x=f(y), x=g(y), a≤y≤b

❖ Dạng bài toán không cho hàm cụ thể, nhưng cho bảng số liệu tương ứng với miền giới hạn bởi x=f(y), x=0, a≤y≤b và miền giới hạn bởi x=f(y), x=g(y), a≤y≤b

3 Nhiệm vụ

➢ Xác định cách tính công thức thể tích bằng tổng Riemann

➢ Viết chương trình code matlab

➢ Cho 4 ví dụ và chạy chương trình

Trang 8

• a và b là hai điểm đầu, cuối của đoạn [a, b] mà vật thể tròn xoay nằm trong

• Công thức này được suy ra từ công thức tính thể tích bằng tổng Riemann, với các bước như sau:

a Phân hoạch đoạn [a;b]

• Chia đoạn [a;b] thành n đoạn nhỏ bằng cách chọn các giá trị y0, y1, , yn

• Trong đó a = y0 < y1 < < yn = b

b Xác định bán kính và diện tích mặt cắt ngang:

• Tại mỗi điểm yi, tính giá trị f(yi) để xác định bán kính của đường cong ở điểm đó

• Diện tích mặt cắt ngang của vật thể tròn xoay tại yi là 𝜋[f(𝑦𝑖)]2

c Tính Diện Tích và Tổng Riemann Tính diện tích của mỗi mặt cắt ngang bằng 𝜋[f(𝑦𝑖)]2

Sử dụng tổng Riemann để xấp xỉ thể tích bằng cách cộng tổng các diện tích này:

V ≈ ∑𝑛𝑖=1𝜋[f(𝑦𝑖)]2 𝑦𝑖

Trong đó yi = yi – yi-1 là chiều rộng của đoạn thứ i

Khi số đoạn nhỏ n tiến đến vô cùng, tổng Reimann tiến gần đến giá trị chính xác của tích phân xác định

V = lim

𝑛→∞∑𝑛 𝜋

𝑖=1 [f(𝑦𝑖)]2 𝑦𝑖 = 𝜋 ∫𝑎𝑏[f(y)]2dy

Lưu ý:

Để áp dụng công thức này, ta cần lưu ý một số điểm sau:

• Hàm số f(y) phải được xác định trên đoạn [a, b]

• Hàm số f(y) phải liên tục trên đoạn [a, b]

• Hàm số f(y) phải không âm trên đoạn [a, b]

Trang 9

5 Code chương trình

Trang 10

❖ Riemann trung tâm

n = input('Nhập số lượng đoạn chia (n): ');

% Tính kích thước mỗi đoạn chia (delta_x)

% Tính giá trị của hàm số tại x_i

f_i = double(subs(f_x, x, x_values(i)));

area = area + f_i * delta_x;

end

% Hiển thị kết quả diện tích

disp(['Diện tích bằng tổng Riemann trung tâm là: ' num2str(area)]);

% Mô hình 3D từng phần được chia ra

figure;

% Vẽ đồ thị hàm số

fplot(f_x, [a b], 'LineWidth', 2);

Trang 11

n = input('Nhập số lượng đoạn chia (n): ');

% Tính kích thước mỗi đoạn chia (delta_x)

delta_x = (b - a) / n;

% Tính diện tích bằng tổng Riemann phải

Trang 12

area = 0;

x_values = a+delta_x:delta_x:b;

for i = 1:n

% Tính giá trị của hàm số tại x_i

f_i = double(subs(f_x, x, x_values(i)));

% Cộng giá trị vào diện tích

area = area + f_i * delta_x;

end

% Hiển thị kết quả diện tích

disp(['Diện tích bằng tổng Riemann phải là: ' num2str(area)]);

% Mô hình 3D từng phần được chia ra

fill([x_values(i)-delta_x x_values(i)-delta_x x_values(i) x_values(i)],

[0 double(subs(f_x, x, x_values(i))) double(subs(f_x, x, x_values(i))) 0], 'c', 'FaceAlpha', 0.5);

Trang 13

n = input('Nhập số lượng đoạn chia (n): ');

% Tính kích thước mỗi đoạn chia (delta_x)

f_i = double(subs(f_x, x, x_values(i)));

% Cộng giá trị vào diện tích

area = area + f_i * delta_x;

end

% Hiển thị kết quả diện tích

disp(['Diện tích bằng tổng Riemann phải là: ' num2str(area)]);

% Mô hình 3D từng phần được chia ra

figure;

Trang 14

fill([x_values(i)-delta_x x_values(i)-delta_x x_values(i) x_values(i)],

[0 double(subs(f_x, x, x_values(i))) double(subs(f_x, x, x_values(i))) 0], 'c', 'FaceAlpha', 0.5);

Trang 15

❖ Dựng hình vật thể quay quanh Oy

Trang 16

% Số lượng điểm để tính thể tích và mô phỏng hình chóp

num_points = 100;

% Tạo mảng các điểm trên trục Oy

x_values = linspace(lower_limit, upper_limit, num_points);

% Tính giá trị của hàm số tại các điểm trên trục Oy

Trang 17

6 Ví dụ minh họa

a Ví dụ cho dạng bài sử dụng bảng số liệu:

Ví dụ 1: Cho hàm số x = g(y) liên tục trên [2; 8] và có một số giá trị được cho trong bảng

Vậy, thể tích của vật thể khi miền giới hạn bởi đường cong x = g(y) và trục hoành, với y

∈ [2; 8], quay quanh trục Oy sử dụng tổng Riemann trái với 6 khoảng chia cách đều là 100π (đơn vị thể tích)

Trang 18

Ví dụ 2: Cho hai hàm số f(y), g(y) liên tục trên R và có một số giá trị cho bởi bảng sau:

Vậy, thể tích của vật thể khi miền phẳng giới hạn bởi các đường cong x = f(y), x = g(y), y

= -2, y = 4 quay xung quanh trục Oy sử dụng tổng Riemann trung tâm với phân hoạch đều (∆y = 1) là 630π (đơn vị thể tích)

Trang 19

b Ví dụ dạng bài toán cho hàm cụ thể

Ví dụ 3: Trong không gian cho hình phẳng giới hạn bởi 𝒙 = 𝒚𝟐; 𝒙 = 𝟐 − 𝒚𝟐 với 0≦y≦1 Tính thể tích tạo được khi xoay hình phẳng quanh trục Oy

𝑉𝑌 = 2𝜋 ∫ 𝑥(√2 − 𝑥 − √𝑥)

1 0

Ta được:

𝑉𝑌 = 2𝜋 ∫ 𝑥(√2 − 𝑥 − √𝑥)

1 0

𝑑𝑥 = 2𝜋 ∫ 𝑥√2 − 𝑥 𝑑𝑥 − 2𝜋 ∫ 𝑥√𝑥 𝑑𝑥

1 0

1 0

Đặt 𝑡2 = 2 − 𝑥 ⇒ 2𝑡 𝑑𝑡 = 𝑑𝑥

𝑉𝑦 = 2𝜋 ∫ (4𝑡2− 2𝑡4) 𝑑𝑡 − 2𝜋 ∫ 𝑥√𝑥 𝑑𝑥 = 32√2𝜋

8𝜋3

1 0

√2

1

Trang 20

Ví dụ 4: Trong không gian cho hình phẳng giới hạn bởi 𝒙 = 𝟎; 𝒙 = √𝒚𝟐 với 1≦y≦4 Tính thể tích tạo được khi xoay hình phẳng quanh trục Oy

𝑉𝑌 = 2𝜋 ∫ 𝑥(√𝑥)

4 1

Ta được: 𝑉𝑌 = 2𝜋 ∫ 𝑥(√𝑥)14 𝑑𝑥 = 2𝜋 ∫ 𝑥32 𝑑𝑥 = 124𝜋

5 4

1

Trang 21

IV KẾT LUẬN 1/ Ưu điểm:

• Matlab cho phép tính toán dễ dàng và tiện lợi, đem lại kết quả chính xác như cách tính phổ thông

• Giúp hiểu rõ hơn về bản thân ứng dụng Matlab và cách áp dụng nó vào các bài toán kỹ thuật

• Việc sử dụng Matlab giúp tiết kiệm thao tác và thời gian tính toán so với các phương pháp thông thường

• Giao diện sử dụng lệnh thông báo nội dung làm cho cấu trúc trở nên đơn giản,

dễ hiểu và dễ sử dụng cho mọi người

2/ Khuyết điểm:

• Thiết kế đoạn code trong Matlab có thể tốn nhiều thời gian và công sức

• Đôi khi đoạn code có thể trở nên rườm rà

Trang 22

V TÀI LIỆU THAM KHẢO

4/Cách lưu file Matlab

workspace-trong-matlab-simulink/43994

Trang 23

https://daynhauhoc.com/t/lam-sao-dua-du-lieu-tu-file-m-vao-khoi-from-CẢM ƠN THẦY/CÔ ĐÃ XEM VÀ ĐÁNH GIÁ BÀI BÁO CÁO CỦA NHÓM CHÚNG EM

HẾT

Ngày đăng: 27/04/2024, 16:42

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w