S n ph m c a Group FB STRONG TEAM TOÁN VD VDC ản phẩm của Group FB STRONG TEAM TOÁN VD VDC ẩm của Group FB STRONG TEAM TOÁN VD VDC ủa Group FB STRONG TEAM TOÁN VD VDC Website tailieumontoan com CHUYÊN[.]
Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Website: tailieumontoan.com CHUN ĐỀ HÌNH HỌC KHƠNG GIAN LUYỆN THI THPT QUỐC GIA NĂM 2019 (Sản phẩm tập thể thầy Tổ 1-STRONG TEAM) Câu [1H3-2.3-2] Cho hình chóp S ABC có SA , SB , SC đơi vng góc SA SB SC , M trung điểm AB Tính góc hai đường thẳng SM BC A 30 Câu B 60 C 90 D 120 [1H3-2.3-3] Cho hình chóp S ABCD có đáy hình thoi cạnh AB a ABC 60 Hình chiếu vng góc H đỉnh S mặt phẳng đáy trung điểm cạnh AB , góc đường thẳng SC mặt phẳng đáy 60 Tính cosin góc hai đường thẳng SB AC 2 A Câu B 10 1 C 10 D [1H3-2.3-3] Cho hình lăng trụ đứng ABC A B C có đáy ABC tam giác cân AB AC a BAC 120 , cạnh bên AA a Tính góc hai đường thẳng AB BC A 90 Câu B 30 C 45 D 60 [1H3-2.3-3] Cho hình hộp ABCD ABC D có đáy ABCD hình chữ nhật, hình chiếu vng góc ABCD trung điểm H AB Cho AB 2a AD 4a A A 8a Gọi A lên mặt phẳng E , N , M trung điểm BC , DE , A B Gọi góc MN A D Thì tan B tan A tan 2 Câu C tan 2 D tan [1H3-2.3-2] Cho hình chóp tứ giác S ABCD , đáy có tâm O cạnh a SO a 30 Gọi M , N trung điểm SA , BC Tính góc đường thẳng MN mặt phẳng ABCD A 30 Câu B 45 C 60 D 90 [1H3-3.3-2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật có cạnh AB a , BC 2a Hai mặt bên SAB SAD vng góc với mặt phẳng đáy ABCD , cạnh SA a 15 ABCD Tính góc tạo đường thẳng SC mặt phẳng A 30 B 45 C 60 D 90 Câu [1H3-3.3-3] Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a ; ABC 60 SB a ABC trùng với trọng tâm tam giác ABC Hình chiếu vng góc điểm S lên mặt phẳng SCD Tính sin Gọi góc đường thẳng SB mặt phẳng Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC A Câu sin [1H3-3.3-3] sin B Cho hình chóp Website: tailieumontoan.com tứ C sin S ABCD , O giác D giao sin điểm 2 AC BD , SBC Tính sin biết SO AB a Gọi góc SA với mặt phẳng sin A Câu 30 sin B A 60 C 30 sin D 15 AA a BCC B B 30 C 90 D 45 [1H3-4.3-2] Cho hình chóp S ABC có đáy ABC tam giác vuông cân C Gọi H trung điểm AB Biết SH vng góc với mặt phẳng ( ABC ) AB SH a Gọi số đo góc tạo hai mặt phẳng A Câu 11 sin [1H3-3.3-3] Cho hình lăng trụ ABC A B C có đáy tam giác cạnh 2a , cạnh bên Hình chiếu vng góc A mặt phẳng ( ABC ) trung điểm H cạnh AB Tính góc đường thẳng A H mặt phẳng Câu 10 15 90 ;100 SBC B SAC Khẳng định sau đúng? 80 ;90 C 60 ;70 D 70 ;80 [1H3-4.3-3] Cho hình chóp S ABCD có đáy ABCD hình thoi khơng hình a3 vuông, AB SA SB SD a Biết thể tích khối chóp , góc hai mặt phẳng SBC A 30 Câu 12 SCD B 45 C 60 D 90 [1H3-4.3-2] Cho hình chóp S ABCD có đáy ABCD hình thang vng A B , AB a , cạnh ABCD SA 2a , gọi M trung điểm cạnh SD Góc hai mặt bên SA vng góc với phẳng MBC A 60 Câu 13 ABCD B 30 C 45 D 120 [1H3-4.3-3] Cho lăng trụ ABC A B C có đáy tam giác đều, hình chiếu A mặt phẳng ABC trùng với trung điểm H cạnh BC , cạnh bên tạo với đáy góc 30 Gọi M MBC MBC điểm thuộc cạnh AA cho AM 2 MA Tính cosin góc A 49 Câu 14 10 B 49 11 C 49 12 D 49 [1H3-4.3-3] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật tâm O , đường thẳng SO vng góc với ABCD Biết AB 2a , AD a , SO a Gọi J , H trung điểm CD , SB Tính cosin góc hai mặt phẳng AHJ ABCD Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC A 0, 231 B 0, 436 Website: tailieumontoan.com C 0, 741 D 0,87 Câu 15 [1H3-4.3-3] Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a Biết BAD 60 , cạnh bên SA a vuông góc mặt phẳng Tính (làm trịn đến phút) B 78 28 A 39 13 Câu 16 ABCD Góc hai mặt phẳng SAC C 39 12 SCD D 39 14 [1H3-4.3-4] Cho hình hộp chữ nhật ABCD ABC D Biết khoảng cách AB BC 2a 2a a , khoảng cách BC AB , khoảng cách AC BD BMD BAD Gọi M trung điểm BC Tính tan góc tạo hai mp A Câu 17 B C D [1H3-5.3-2] Cho hình chóp S ABCD có đáy ABCD hình thang cân, đáy lớn AB Biết AB 2a , AD DC CB a phẳng ABCD Hình chiếu vng góc H đỉnh S lên mặt trùng với trung điểm cạnh AB , góc SB đáy 60 Tính khoảng cách từ điểm H đến đường thẳng SC a A Câu 18 C a B C a D [1H3-5.2-3] Cho lăng trụ tam giác ABC ABC có đáy ABC tam giác cạnh a Hình chiếu vng góc A mặt phẳng ABC trung điểm O cạnh AB Góc đường thẳng AA mặt phẳng A B C 60 Gọi I trung điểm cạnh BC Khoảng cách từ I đến đường thẳng AC a 21 A Câu 19 a 42 B a 21 C a 42 D [1H3-5.3-2] Cho hình chóp tứ giác S ABCD có tất các cạnh a Khoảng cách từ SBC điểm A đến mặt phẳng a A Câu 20 a B a C a D [1H3-5.3-2] Cho hình chóp S ABCD có đáy ABCD hình thang vuông A B , AB BC a , AD 2a SA vng góc với mặt phẳng ABCD , đường thẳng SC tạo với mặt phẳng SAB A 3a SCD góc 30 Khoảng cách từ A đến mặt phẳng a B C 2a D a Câu 21 [1H3-5.3-3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O , cạnh a , BAD 60 Đường thẳng SO tạo với mặt phẳng ( ABCD) góc 60 Hình chiếu vng góc S mặt Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Website: tailieumontoan.com ABCD điểm H thuộc đoạn BD cho BD 4 BH Tính khoảng cách từ điểm B đến mặt phẳng ( SCD) theo a phẳng 3a 39 A 52 Câu 22 2a 39 B 13 3a 39 C 13 a 39 D 13 [1H3-5.3-3] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AD 2 AB 2a Cạnh bên SA 2a vng góc với mặt đáy Gọi M , N trung điểm SB SD Tính AMN khoảng cách từ S đến mặt phẳng a A Câu 23 B 2a 3a C [1H3-5.3-2] Cho hình lăng trụ ABC ABC tích D a V a3 , tam giác ABC có diện a 19 Gọi M trung điểm cạnh AA Khoảng cách từ điểm M đến mặt tích phẳng ABC 2a 57 A 19 Câu 24 a 57 B 19 6a 57 C 19 3a 57 D 19 [1H3-5.3-3] Cho lăng trụ ABC ABC có đáy tam giác cạnh a Hình chiếu vng góc ABC trùng với trọng tâm G tam giác ABC Cạnh bên BB hợp với B lên mặt phẳng đáy ABC BCC B góc 60 Khoảng cách từ A đến mặt phẳng 3a A 13 a B 13 2a C 13 3a D 13 Câu 25 ABC A1 B1C1 AA1 2a BAC 120 có AB a , [1H3-5.3-3] Cho hình lăng trụ đứng AC 2a , Gọi I , K trung điểm cạnh BB1 , CC1 Tính khoảng cách từ điểm I đến mặt phẳng A1BK a A Câu 26 B a 15 a 15 C a D [1H3-5.4-3] Cho hình chóp S ABCD có đáy hình chữ nhật, AD 2a , tam giác SAB tam giác cân S nằm mặt phẳng vng góc với đáy Gọi H trung điểm AB Tính khoảng cách hai đường thẳng SH CD A a Câu 27 [1H3-5.4-3] B 2a Cho hình chóp S ABC có a C đáy ABC D a tam giác cân, AB AC 2a , góc BAC 120 Tam giác SAB cân S nằm mặt phẳng vng góc với đáy, góc tạo Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC mặt phẳng SBC mặt phẳng đáy ABC Website: tailieumontoan.com 60 Tính khoảng cách hai đường thẳng AC SB a 15 A 10 a B a C a 15 D Câu 28 [1H3-5.4-3] Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a , BAD 60 , tam giác SAD nằm mặt phẳng vng góc với đáy Khoảng cách d hai đường thẳng SA BD a A Câu 29 a B a 15 C 10 a 15 D [1H3-5.4-3] Cho hình lăng trụ ABC ABC có đáy tam giác cạnh a Hình chiếu vng góc A mặt phẳng ABC trùng với trung điểm H BC Biết AH a Tính khoảng cách h đường thẳng AA BC A Câu 30 h 3a B h 3a C h a D h a [1H3-5.4-3] Cho lăng trụ đứng tam giác ABC ABC có đáy tam giác vuông cân B AB BC a , AA a , M trung điểm BC Tính khoảng cách hai đường thẳng AM BC a A Câu 31 a B 2a C D a [1H3-5.4-3] Cho hình hộp ABCD ABC D có tất cạnh a ba góc đỉnh A 60 Tính khoảng cách hai đường thẳng AB CC a A Câu 32 a a a B C D [1H3-5.4-4] Cho hình chóp S ABCD có đáy ABCD nửa lục giác đường kính AD , O trung điểm CD , AD 4a, SA SB SO 2a Tính khoảng cách SA CD 2a A Câu 33 a 14 B a C 4a D [1H3-5.4-3] Cho hình chóp tứ giác S ABCD có góc cạnh bên mặt đáy 60 Gọi O tâm hình vng ABCD Biết diện tích tam giác OAB 2a , tính thể tích khối chóp cho A 16a 3 16a B 16a3 3 C Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! D 16a Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Câu 34 Website: tailieumontoan.com [2H1-3.2-3] Cho hình chóp S ABCD có đáy ABCD hình thoi, cạnh BD 2a Hai tam ABCD 60 Tính giác SAB , SAD tam giác góc cạnh bên SC mặt phẳng thể tích khối chóp S ABCD a3 A 12 Câu 35 2a C a3 B a3 D [2H1-3.2-3] Cho hình chóp S ABCD có đáy hình bình hành Gọi M , N , P, Q trọng tâm tam giác SAB, SBC , SCD, SDA Gọi O điểm mặt phẳng đáy ABCD Biết thể tích khối chóp O.MNPQ V Tính thể tích khối chóp S ABCD 27 V A Câu 36 27 V B V C 27 V D [2H1-3.4-3] Cho tứ diện ABCD có AB AC BD CD 1 Khi thể tích khối tứ diện lớn khoảng cách hai đường thẳng AD BC A B C D SA ABC Câu 37 [2H1-3.4-3] Cho hình chóp tam giác S ABC , Đáy ABC tam giác vuông cân đỉnh B , SB a Gọi góc hai mặt phẳng SCB ABC Xác định giá trị sin để thể tích khối chóp S ABC lớn A Câu 38 sin B sin C sin 1 D sin [2H1-3.2-2] Cho lăng trụ tam giác ABC ABC Tam giác ABC có diện tích hợp với mặt phẳng đáy góc có số đo 30 Tính thể tích khối lăng trụ A Câu 39 B C 16 D 24 [2H1-3.4-3] Cho lăng trụ ABC ABC có đáy ABC tam giác vng A , AB 1, AC 2 ABC trùng với trung điểm cạnh BC Biết khoảng cách hai Hình chiếu A lên mặt phẳng đường thẳng CC AB A Câu 40 Thể tích khối lăng trụ ABC ABC B C D.1 [2H1-3.4-3] Cho hình lăng trụ ABC ABC có đáy tam vng cân A Hình chiếu vng góc ABC trùng với trọng tâm tam giác ABC Biết khoảng cách hai điểm A lên mặt phẳng đường thẳng AA BC 17 a , cạnh bên AA 2a Tính theo a thể tích V khối lăng trụ ABC ABC biết AB a A V 34 a 18 B V 102 a C V 102 a 18 Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! D 34 a Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Câu 41 Website: tailieumontoan.com [2H1-3.4-3] Cho lăng trụ đứng ABCD ABC D có đáy hình thang vng A B , gọi E điểm AD trung Cho AD 2 AB 2 BC 2a Hãy tính theo a thể tích khối lăng 22 a trụ ABCD ABC D biết khoảng cách hai đường thẳng BE AD 22 22 a B 11 A 9a Câu 42 a C 22 a D 22 [2H1-3.6-4] Cho x , y số thực dương khơng đổi Xét hình chóp S ABC có SA x BC y cạnh lại Khi thể tích khối chóp S ABC đạt giá trị lớn tích x y A Câu 43 B C D SA ABC AB a [2H1-3.2-2] Cho hình chóp S ABC có đáy ABC tam giác vng A , , AC a , SA a Gọi H , K hình chiếu A lên SB , SC Tính thể tích khối chóp S AHK theo a ? a3 A Câu 44 2a B 45 a3 C 12 2a D 15 [2H1-3.3-3] Cho tứ diện SABC hai điểm M , N thuộc cạnh SA , SB SM SN 2 cho AM , BN Mặt phẳng ( P) qua hai điểm M , N song song với cạnh SC , VSCMNKL cắt AC , BC L , K Tính tỉ số thể tích VS ABC V SCMNKL V SA BC A VSCMNKL V SABC B VSCMNKL V SABC C VSCMNKL V SABC D Câu 45 [Mức độ 3] Cho lăng trụ tam giác ABC ABC Trên tia đối tia BA lấy điểm M cho BM AB MNP chia khối ¢¢ ¢ Gọi N , P trung điểm A C , B B Mặt phẳng V lăng trụ ABC A¢B ¢C ¢ thành hai khối đa diện, khối đa diện chứa đỉnh A tích V1 V khối đa diện chứa đỉnh C tích Tỉ số V2 97 A 59 Câu 46 49 144 B 49 95 C 95 144 D [2H1-3.3-3] Cho khối hộp ABCD ABC D , điểm M thuộc cạnh CC cho CC 3CM Mặt ABM V1 thể tích khối đa diện chứa đỉnh A , V2 V V thể tích khối đa diện chứa đỉnh B Tính tỉ số thể tích phẳng 41 A 13 chia khối hộp thành hai khối đa diện 14 B 13 45 C 13 Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! 13 D Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Câu 47 Website: tailieumontoan.com [1H3-5.3-4] Cho hình lập phương ABCD ABC D cạnh a Trong mặt phẳng chứa đường mặt phẳng tạo với BDDB góc nhỏ Tính d A, thẳng CD , gọi a A Câu 48 a C B a a D [2H1-3.2-3] Cho hình chóp tam giác S ABC có cạnh AB a Các cạnh bên SA , SB , SC tạo với mặt đáy góc 60 Gọi D giao điểm SA với mặt phẳng qua BC vng góc với SA Thể tích V khối chóp S BCD là: A Câu 49 V 5a 96 B V a2 12 C V 5a 96 D V 5a 32 [2H1-3.2-3] Cho hình lăng trụ tam giác ABC ABC có cạnh đáy C cạnh bên AM A N A C Tính thể tích V a Lấy M , N AB, AC cho AB khối BMNC C ? a3 A 108 Câu 50 2a B 27 3a C 108 a3 D 27 [2H1-3.2-4] Cho hình chóp S ABCD Đáy ABCD hình bình hành, M trung điểm SB , N SN SP MNP cắt thuộc cạnh SC cho SC , P thuộc cạnh SD cho SD Mặt phẳng SA, AD, BC Q, E , F Biết thể tích khối S MNPQ Tính thể tích khối ABFEQM 73 A 15 154 B 66 207 C 41 29 D Hết - LỜI GIẢI CHI TIẾT CHUYÊN ĐỀ HÌNH HỌC KHÔNG GIAN LUYỆN THI THPT QUỐC GIA NĂM 2019 1.B 11.D 21.D 31.B 41.C 2.B 12.C 22.A 32.D 42.A 3.D 13.B 23.B 33.C 43.B 4.A 14.D 24.D 34.D 44.A BẢNG ĐÁP ÁN 5.C 6.C 15.D 16.B 25.D 26.B 35.B 36.D 45.C 46.A 7.D 17.A 27.C 37.B 47.D Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! 8.A 18.D 28.D 38.A 48.A 9.A 19.A 29.C 39.D 49.B Trang 10.B 20.D 30.A 40.D 50 A Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Câu Website: tailieumontoan.com [1H3-2.3-2] Cho hình chóp S ABC có SA , SB , SC đơi vng góc SA SB SC M trung điểm AB Tính góc hai đường thẳng SM BC A 30 B 60 C 90 D 120 Lời giải Tác giả: Phạm Thị Phương Thúy; Fb:thuypham Chọn B Cách SM , BC SM , SN SMN Gọi N trung điểm AC Ta có MN // BC 1 MN BC SM AB SN AC 1 2 Ta có , , Mặt khác SA , SB , SC đôi vng góc SA SB SC SAB SBC SAC AB BC AC Từ 1 2 ta có MN SM SN SMN SMN 60 SM , BC SMN 60 Vậy Cách Đặt SA SB SC a Mặt khác SA , SB , SC đôi vng góc SA SB SC SAB SBC SAC AB BC AC a ABC tam giác cạnh a 1 1 SA SB SC SB SA SC SA.SB SB SC SB SB a 2 +) SM BC = = Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC n phẩm Group FB: STRONG TEAM TOÁN VD VDC m Group FB: STRONG TEAM TOÁN VD VDC a Group FB: STRONG TEAM TOÁN VD VDC Website: tailieumontoan.com a2 SM BC c os SM , BC cos SM , BC 22 SM BC a SM , BC 60 Suy Câu [1H3-2.3-3] Cho hình chóp S ABCD có đáy hình thoi cạnh AB a ABC 60 Hình chiếu vng góc H đỉnh S mặt phẳng đáy trung điểm cạnh AB , góc đường thẳng SC mặt phẳng đáy 60 Tính cosin góc hai đường thẳng SB AC 2 A B 10 1 C 10 D Lời giải Tác giả: Đào Văn Tiến; Fb:Đào Văn Tiến Chọn B Cách Ta có: , ABCD SC , CH SCH SC 60 a2 SB AC ( SH HB ) AC SH AC HB.AC HB.AC AH AC cos HAC + + AC a , CH 3a a SH CH tan SCH , a2 2 SB AC 9a a a 10 a 10 cos SB , AC a 2 10 4 SB AC + SB SH HB Cách a a a A ;0;0 , B ;0;0 , C 0; ;0 2 Oxyz H (0;0;0) + Chọn trục toạ độ , với , Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang 10