1. Trang chủ
  2. » Giáo án - Bài giảng

Kntt c7 b19 pt duong thang p1

19 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 3,39 MB

Nội dung

CHƯƠNG I CHƯƠNG VII PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG §19 PHƯƠNG TRÌNH ĐƯỜNG THẲNG §20 VỊ TRÍ TƯƠNG ĐỐI GIỮA HAI ĐƯỜNG THẲNG GĨC VÀ KHOẢNG CÁCH §21 ĐƯỜNG TRỊN TRONG MẶT PHẲNG TỌA ĐỘ §22 BA ĐƯỜNG CONIC BÀI TẬP CUỐI CHƯƠNG VII CHƯƠNG I ĐỘ TRONG MẶT PHẲNG CHƯƠNG VII PHƯƠNG PHÁP TỌA TỐN HÌNH HỌC TỐN HÌNH HỌC 19 11 ➉ PHƯƠNG TRÌNH ĐƯỜNG THẲNG PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG KIẾN THỨC, KĨ NĂNG  Mơ tả phương trình tổng qt phương  Vectơ phương trình tham số đường thẳng  Lập phương trình đường thẳng biết  Vectơ pháp tuyến điểm • vectơ pháp tuyến điểm vectơ  Phương trình tổng quát phương hai điểm  Giải thích mối liên hệ đồ thị hàm bậc  Phương trình tham số đường thẳng  Vận dụng kiến thức phương trình đường thẳng để giải số tốn có liên quan đến thực tế Đường thẳng tập hợp điểm, xác định tính chất đặc trưng điểm thuộc đường thẳng Do vậy, ta đại số hóa đường thẳng cách thể tính chất đặc trưng điều kiện đại số tọa độ điểm tương ứng THUẬT NGỮ PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG   HĐ1:Cho vectơ điểm Tìm tập hợp điểm cho vng góc với  Giải: Từ hình vẽ 7.1a, ta thấy tập hợp điểm cho vng góc với thuộc đường thẳng qua điểm vng góc với giá vectơ PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG   Vectơ khác gọi vectơ pháp tuyến đường thẳng giá vng góc với  Nhận xét  Nếu vectơ pháp tuyến đường thẳng vectơ pháp tuyến  Đường thẳng hoàn toàn xác định biết điểm vectơ pháp tuyến 1 PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG  Giải:   Ví dụ Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh Hãy Đường trung trực đoạn thẳng vectơ pháp tuyến đường vng góc với trung trực đoạn thẳng pháp tuyến vectơ pháp tuyến đường cao kẻ từ A tam giác nên có vectơ Đường cao kẻ từ vng góc với pháp tuyến tam giác nên có vectơ PHƯƠNG TRÌNH TỔNG QT CỦA ĐƯỜNG THẲNG HĐ2: Trong mặt phẳng tọa độ, cho đường thẳng qua điểm có vectơ pháp tuyến Chứng minh điểm thuộc   (1) Giải Ta có : Từ hình vẽ ta thấy điểm thuộc vectơ vng góc với vectơ Vậy điểm thuộc PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG  Nhận xét: Trong HĐ2, đặt (1) cịn viết dạng gọi phương trình tổng quát Như vậy, điểm thuộc đường thẳng tọa độ thỏa mãn phương trình tổng qt   Trong mặt phẳng tọa độ, đường thẳng có phương trình tổng qt dạng , với không đồng thời Ngược lại, phương trình dạng , với khơng đồng thời , phương trình đường thẳng, nhận vectơ pháp tuyến 1 PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG Trong mặt phẳng Luyện Ví dụ • Trong mặt phẳng tọa độ, tọatập độ,1 cho tam giác có ba đỉnh Lập lập phương trình tổng quát phương trình tổng quát đường cao kẻ từ tam giác đường thẳng qua điểm nhận Giải vectơ pháp tuyến Đường cao kẻ từ tam giác vng góc với nên có vectơ pháp tuyến Giải Đường thẳng có phương trình Đường cao kẻ từ tam giáccó phương trình tổng quát     hay hay PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG   Ví dụ Trong mặt phẳng tọa độ, lập phương trình đường thẳng qua có vectơ pháp tuyến , với số thực cho trước Hãy mối liên hệ đường thẳng với đồ thị hàm số Giải Đường thẳng phương trình hay Đường thẳng tập hợp điểm thỏa mãn , Do đó, đường thẳng đồ thị hàm số 1 PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẲNG   Luyện Hãy vectơ pháp tuyến đường thẳng tập  2 Giải Ta có Vậy vectơ pháp tuyến đường thẳng Nhận xét Trong mặt phẳng tọa độ, cho đường thẳng Nếu phương trình đưa dạng (với ) vng góc với Nếu phương trình đưa dạng (với) 2 PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG   HĐ3Trong Hình 7.2a, vật thể chuyển động với vectơ vận tốc : qua di chuyển đường thẳng nào? Giải Một vật thể chuyển động với vectơ vận tốc qua di chuyển đường thẳng PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG    Vectơ khác gọi vectơ phương đường thẳng giá song song trùng với Nhận xét:  Nếu vectơ phương đường thẳng vectơ phương  Đường thẳng hoàn toàn xác định biết điểm vectơ phương  Vec tơ vng góc với vec tơ nên vectơ pháp tuyến đường thẳng hai vectơ phương đường thẳng ngược lại 2 PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG Trong mặt phẳng tọa độ,   Luyện tập Ví dụ Hãy vectơ cho 3.phương đường thẳng Hãy hai vectơ chỉ phương đường thẳng Giải Giải  • Đường thẳng nhận vectơ Đường thẳng có vectơ pháp tuyến nên có vectơ phương phương Lấy , vectơ phương đường thẳng PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG HĐ4: Chuyển động vật thể thể mặt phẳng Vật thể khởi hành từ chuyển động thẳng với vận tốc a) Hỏi vật thể chuyển động đường thẳng (chỉ điểm qua vectơ phương đường thẳng đó)? b) Chứng minh thời điểm tính từ khởi hành, vật thể vị trí có tọa độ   Giải a) Vật thể chuyển động đường thẳng qua điểm nhận làm vectơ phương b) Giả sử thời điểm tính từ khởi hành, vật thể vị trí thuộc đường thẳng qua điểm nhận làm vectơ phương Khi đó, hai vectơ phương nên tồn số thực cho PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG   Ta có Do Vậy với   Cho đường thẳng qaua điểm có vectơ phương Khi điểm thuộc đường thẳng tồn số thực cho , hay (2) Hệ (2) gọi phương trình tham số đường thẳng (t tham số) 2 PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG  • Lập phương trình Ví dụ tham số đường thẳng qua điểm có vectơ phương Giải Phương trình tham số đường thẳng   Lập phương trình tham sốtập của4.đường thẳng qua điểm song song với đường thẳng Giải Đường thẳng có vectơ pháp tuyến Đường thẳng song song với đường thẳng nên nhận làm vectơ pháp tuyến, có vectơ phương Phương trình tham số đường thẳng   Luyện PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG Ví dụ Giải   Lập phương trình tham số đường thẳng qua hai điểm  Đường thẳng qua     có phương trình tham số là: PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG Luyện Lập phương trình tham số phương trình tổng quát tập đường thẳng qua hai điểm phân biệt cho trước   Giải + + Đường thẳng qua nên có vectơ phương , có vectơ pháp tuyến là: + Phương trình tham số đường thẳng + Phương trình tổng quát đường thẳng

Ngày đăng: 17/10/2023, 05:18

w