1. Trang chủ
  2. » Khoa Học Tự Nhiên

MỘT SỐ DẠNG BÀI TẬP HÌNH HỌC doc

6 453 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 195,2 KB

Nội dung

MỘT SỐ DẠNG BÀI TẬP DẠNG 1. Xác định các yếu tố của (E), (H), (P) khi biết phương trình chính tắc của chúng. Ví dụ 1. Cho elip (E) có phương trình 2 2 x y 1 4 1   Tìm tiêu điểm, tâm sai, đường chuẩn của (E). Giải: Ta có: a 2 = 4, b 2 = 1 và c 2 = a 2 – b 2 = 3. Vậy a = 2, b = 1, c = 3 Tiêu điểm của (E) là F 1 (– 3 ; 0), F 2 ( 3 ; 0) Tâm sai của (E) là c 3 e a 2   Đường chuẩn của (E) là x = 4 3  DẠNG 2. Lập phương trình chính tắc của (E), (H), (P). Ví dụ 2. Viết phương trình chính tắc của hypebol (H), biết (H) đi qua M(– 2;1)và góc giữa hai đường tiệm cận bằng 60 o . Giải: Gọi phương trình chính tắc của (H) là: 2 2 2 2 x y 1 a b   Vì M thuộc (H) nên 2 2 4 1 1 a b   (*) Phương trình hai đường tiệm cận Δ 1 : bx – ay = 0 và Δ 2 : bx + ay = 0 Góc giữa hai đường tiệm cận là: cos(Δ 1 ; Δ 2 ) = 2 2 2 2 b a b a   = cos60 o . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 b a 2(b a ) b a b 3a 1 2 b a 2(b a ) (b a ) a 3b                       Với b 2 = 3a 2 thay vào (*) được a 2 = 11/3; b 2 = 11. Pt (H): 2 2 x y 1 11/ 3 11   Với a 2 = 3b 2 thay vào (*) được a 2 = 1; b 2 = 1/3. Pt (H): 2 2 x y 1 1 1/ 3   DẠNG 3. Lập phương trình tiếp tuyến của các đường cônic Ví dụ 3. Viết phương trình đường thẳng (d) đi qua điểm A(1; 4) và tiếp xúc với hypebol (H): 2 2 x y 1 1 4   . Tìm tọa độ tiếp điểm. Giải: Gọi M(x o ; y o ) là tiếp điểm. Khi đó đường thẳng d có phương trình dạng (d): x o x – y o y/4 = 1 Vì (d) đi qua A(1; 4) nên x o – y o = 1 (1) Mặt khác M thuộc (H) nên: 2 2 0 0 x y 1 1 4   (2) Từ (1) và (2) suy ra 0 0 x 1 y 0      hoặc 0 0 5 x 3 8 y 3            Suy ra M(1; 0) hoặc M(–5/3; –8/3) Tiếp tuyến của (H) là: x = 1 hoặc 5 2 x y 1 5x 2y 3 0 3 3        DẠNG 4. Lập phương trình các đường cônic không ở dạng chính tắc Ví dụ 4. Trong mặt phẳng tọa độ Oxy cho đường cong (P) có phương trình 16x 2 + 9y 2 + 24xy – 56x + 108y + 124 = 0 Chứng minh rằng (P) là một parabol. Tìm tọa độ tiêu điểm và đường chuẩn của parabol đó. Giải: 16x 2 + 9y 2 + 24xy – 56x + 108y + 124 = 0 2 2 2 3x 4y 1 (x 1) (y 2) 5              (*) Đặt F(1; –2) và đường thẳng Δ: 3x – 4y + 1 = 0. Khi đó (*)  MF 2 = d 2 (M; Δ)  MF = d(M; Δ) Vậy (P) là phương trình parabol với tiêu điểm F(1; –2) và đường chuẩn Δ: 3x– 4y + 1 = 0. DẠNG 5. Xác định điểm M nằm trên (E), (H), (P) thỏa mãn điều kiện cho trước. Ví dụ 5. Cho parabol (P): y 2 = 4x. a) Tìm trên (P) điểm M cách F một khoảng là 4. b) Tìm trên (P) điểm M  O sao cho khoảng cách từ M đến Oy gấp hai lần khoảng cách từ M đến Ox. Giải: a) Từ phương trình (P): y 2 = 4x  p = 2 Ta có: MF = x M + p/2 = 4  x M + 1 = 4  x M = 3 Thay vào (P)  y M 2 = 12  y M = 2 3  Vậy tọa độ điểm M là: (3; 2 3  ). b) Gọi tọa độ M(x; y). Do M thuộc (P) nên: y 2 = 4x  x 0 Từ giả thiết M  O và khoảng cách từ M đến Oy gấp hai lần khoảng cách từ M đến Ox ta có: x 2 y 0 x 2 y 0      Ta có hệ: 2 y 4x x 16 y 8 x 2 y 0               Vậy tọa độ M là (16; 8) và ( 16; –8). DẠNG 6. Chứng minh các tính chất của đường cônic Ví dụ 6. Cho parabol (P): y 2 = 4x. Đường thẳng (d) bất kỳ đi qua tiêu điểm F có hệ số góc k ≠ 0 cắt (P) tại M và N. a. Chứng minh rằng: tích khoảng cách từ M và N đến trục Ox có giá trị không đổi. b. Tìm k sao cho FM = 4FN. Giải: Vì (d) đi qua tiêu điểm F có hệ số góc k ≠ 0 nên có phương trình (d): y = k(x – 1) Phương trình hoành độ giao điểm của (d) và (P) là: [k(x – 1)] 2 = 4x  k 2 x 2 – 2(k 2 + 2)x + k 2 = 0 (*) Δ’ = (k 2 + 2) 2 – k 4 = 2k 2 + 4 > 0 k  Phương trình luôn có hai nghiệm phân biệt. Vậy đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt M và N. a. Hoành độ hai điểm M và N là hai nghiệm của phương trình (*) Theo định lý Viet có: x M + x N = 2 2 2(k 2) k  (1) x M .x N = 1 (2) d 1 = d(M; Ox) = M M y x  d 2 = d(M; Ox) = N N y x  1 2 M N d d 16x x 4    không đổi. b) Theo công thức bán kính qua tiêu điểm: MF = 1 + x M ; NF = 1 + x N Để MF = 4NF thì 1 + x M = 4(1 + x N )  x M – 4x N = 3 ( 3) Từ (2) và (3)  x M = 4; x N = 1/4 Thay vào (1)  k = 3 4  . MỘT SỐ DẠNG BÀI TẬP DẠNG 1. Xác định các yếu tố của (E), (H), (P) khi biết phương trình chính tắc của chúng tuyến của (H) là: x = 1 hoặc 5 2 x y 1 5x 2y 3 0 3 3        DẠNG 4. Lập phương trình các đường cônic không ở dạng chính tắc Ví dụ 4. Trong mặt phẳng tọa độ Oxy cho đường cong (P). chuẩn Δ: 3x– 4y + 1 = 0. DẠNG 5. Xác định điểm M nằm trên (E), (H), (P) thỏa mãn điều kiện cho trước. Ví dụ 5. Cho parabol (P): y 2 = 4x. a) Tìm trên (P) điểm M cách F một khoảng là 4. b) Tìm

Ngày đăng: 18/06/2014, 11:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w