1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài tập hình học KG

21 395 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 1,86 MB

Nội dung

BI 1 Câu 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng (d) : x y 2 0 2x z 6 0 − − =   − − =  sao cho giao tuyến của mặt phẳng (P) và mặt cầu (S) : 2 2 2 x y z 2x 2y 2z 1 0+ + + − + − = là đường tròn có bán kính r = 1. Câu 2: Cho lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a. Gọi D, F lần lượt là trung điểm các cạnh BC, C'B'. Tính khoảng cách giữa hai đường thẳng A'B và B'C'. GIẢI Câu 1: Mặt phẳng (P) chứa (d) có dạng: m(x – y – 2) + n(2x – z – 6) = 0 (P) : (m 2n)x my nz 2m 6n 0⇔ + − − − − = ° Mặt cầu (S) có tâm I(-1; 1; -1), bán kính R = 2. ° (P) cắt (S) theo một đường tròn giao tiếp (C) có bán kính r = 1 2 2 d(I; P) R r 3⇔ = − = 2 2 2 m 2n m n 2m 6n 3 (m 2n) m n − − − + − − ⇔ = + + + 2 2 4m 7n 3. 2m 5n 4m.n⇔ − − = + + 2 2 5m 22m.n 17n 0⇔ + + = ° Cho 2 17 n 1 5m 22m 17 0 m 1 hay m 5 = ⇒ + + = ⇔ = − = − ° Vậy, có 2 mặt phẳng (P): 1 2 (P ) : x y z 4 0 (P ) : 7x 17y 5z 4 0 + − − =   − + − =  Câu 2: . Cách 1: ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ / / / / / / AB BC CA A B B C C A a= = = = = = ⇒ các tam giác ABC, A / B / C / là các tam giác đều. ° Ta có: / / / / / B C // BC B C //(A BC)⇒ / / / / / / / d(A B; B C ) d(B C ; (A BC)) d(F; (A BC))⇒ = = ° Ta có: / / / / BC FD BC (A BC) BC A D ( A BC caân taïi A ) ⊥  ⇒ ⊥  ⊥ ∆  ° Dựng / FH A D⊥ ° Vì / / BC (A BC) BC FH H (A BC)⊥ ⇒ ⊥ ⇒ ⊥ ° DA / FD vuông có: 2 / 2 2 2 2 2 1 1 1 4 1 7 a 21 FH . 7 FH A F FD 3a a 3a = + = + = ⇒ = ° Vậy, / / / a 21 d(A B; B C ) FH 7 = = Cách 2: ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ DABC, DA / B / C / là các tam giác đều cạnh a. Trang 1 A / B / C / C B A H F D A / C / B / A B C D x a z y ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), / / / a a 3 a a 3 B ; ; 0 , C ; ; 0 , A (0; 0; a), 2 2 2 2 a a 3 a a 3 B ; ; a , C ; ; a 2 2 2 2     −  ÷  ÷         −  ÷  ÷     ° Ta có: / / / / / B C // BC, B C // (A BC) / / / / / / / / d(B C ; A B) d(B C ; (A BC)) d(B ; (A BC))⇒ = = ° / / a a 3 a a 3 A B ; ; a , A C ; ; a 2 2 2 2     = − = − −  ÷  ÷     uuuur uuuur ° 2 / / 2 2 2 a 3 3 [A B; A C] 0; a ; a 0; 1; a .n, 2 2     = = =  ÷  ÷     uuuur uuuur r với 3 n 0; 1; 2   =  ÷   r ° Phương trình mp (A / BC) qua A / với pháp vectơ n r : 3 0(x 0) 1(y 0) (z a) 0 2 − + − + − = / 3 a 3 (A BC) : y z 0 2 2 ⇔ + − = ° / / a 3 3 a 3 a 3 .a a 21 2 2 2 2 d(B (A BC)) . 7 3 7 1 4 2 + − = = = + ° Vậy, / / / a 21 d(A B; B C ) . 7 = BI 2 Câu 1: Trong không gian Oxyz cho A(0; 1; 0), B(2; 2; 2), C(-2; 3; 1) và đường thẳng (D) : x 1 y 2 z 3 2 1 2 − + − = = − 1. Tìm điểm M thuộc (D) để thể tích tứ diện MABC bằng 3. 2. Tìm điểm N thuộc (D) để thể tích tam giác ABN nhỏ nhất. Câu 2: (1,0 điểm) Cho hình chóp S.ABC đáy ABC là tam giác đều cạnh a. SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) là h. Tính h theo a để hai mặt phẳng (SAB) và (SAC) vuông góc nhau. GIẢI Câu 1: Trang 2 1. Phương trình tham số của (D): x 1 2t y 2 t z 3 2t = +   = − −   = +  ° M ( ) M(1 2t; 2 t; 3 2t)∈ ∆ ⇒ + − − + ° AB (2; 1; 2), AC ( 2; 2;1)= = − uuur uuur ° [AB; AC] ( 3; 6; 6) 3(1; 2; 2) 3.n= − − = − − = − uuur uuur r , với n (1; 2; 2)= − r ° Phương trình mp (ABC) qua A với pháp vectơ n r : (ABC): x + 2y – 2z – 2 = 0. ° 2 2 2 ABC 1 1 9 S [AB; AC] ( 3) ( 6) 6 . 2 2 2 = = − + − + = uuur uuur ° Đường cao MH của tứ diện MABC là khoảng từ M đến (ABC): 1 2t 2( 2 t) 2(3 2t) 2 4t 11 MH d(M(ABC)) 3 1 4 4 + + − − − + − − − = = = + + ° Thể tích tứ diện MABC bằng 3 4t 11 1 9 V . . 3 3 2 3 + ⇔ = = 5 17 4t 11 6 t hay t . 4 4 ⇔ + = ⇔ = − = − ° Vậy, có 2 điểm M cần tìm là: 3 3 1 15 9 11 M ; ; hay M ; ; 2 4 2 2 4 2     − − −  ÷  ÷     2. N ( ) N(1 2t; 2 t; 3 2t)∈ ∆ ⇒ + − − + ° 2 2 ABN 1 1 2 3 2 S [NA; NB] 32t 128t 146 (4t 8) 9 2 2 2 2 = = + + = + + ≥ uuur uuur ABN 3 2 maxS 4t 8 0 t 2. 2 ⇒ = ⇔ + = ⇔ = − ° Vậy, điểm N cần tìm là N(-3; 0; 1). Câu 2: Cách 1: ° Gọi O là tâm của DABC ° Ta có: SA SB SC OA OB OC ( ABC ñeàu) = =   = = ∆  ⇒ SO là trục của đường tròn (ABC) SO (ABC)⇒ ⊥ ° Mà : AO BC; SO BC BC (SOA) BC SA⊥ ⊥ ⇒ ⊥ ⇒ ⊥ ° Dựng BI SA⊥ , suy ra: SA (IBC) SA IC.⊥ ⇒ ⊥ · BIC⇒ là góc phẳng nhị diện (B, SA, C). ° DSOA vuông có: 2 2 2 2 2 2 2 2 2 a 3h a 3h a SA SO OA h SA 3 3 3 + + = + = + = ⇒ = ° Gọi M là trung điểm BC Ta có: BM (SOA), BI SA⊥ ⊥ IM SA⇒ ⊥ (định lý 3 đường vuông góc) ⇒ MIA SOA∆ ∆: Trang 3 S I A O B M C 2 2 2 2 AM a 3 3 3ah MI SO. h. . SA 2 3h a 2 3h a ⇒ = = = + + ° SAB SAC (c.c.c) IB IC IBC∆ = ∆ ⇒ = ⇒ ∆ cân tại I. ° (SAB) (SAC) IBC⊥ ⇔ ∆ vuông cân tại I 1 IM BC 2 ⇔ = 2 2 2 2 2 2 2 3ah 1 a 3h 3h a 2 2 3h a a 6 9h 3h a h . 6 ⇔ = ⇔ = + + ⇔ = + ⇔ = ° Vậy, a 6 h . 6 = Cách 2: ° Gọi H là tâm của DABC và M là trung điểm của BC ° Ta có: SA SB SC HA HB HC ( ABC ñeàu) = =   = = ∆  ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc A(0; 0; 0), a a 3 a a 3 a 3 a 3 B ; ; 0 , C ; ; 0 , H 0; ; 0 , S 0; ; h 2 2 2 2 2 3         −  ÷  ÷  ÷  ÷         . ° a 3 a a 3 a a 3 SA 0; ; h , SB ; ; h , SC ; ; h 3 2 6 2 6       = = − = − −  ÷  ÷  ÷       uuur uur uuur ° 2 1 ah 3 ah a 3 a a [SA; SB] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6   = − − = − − = −  ÷   uuur uur r với 1 n (3h 3; 3h; a 3)= − r ° 2 2 ah 3 ah a 3 a a [SA; SC] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6   = − − = − − = −  ÷   uuur uuur r với 2 n (3h 3; 3h; a 3)= − r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA; SB uuur uur nên có pháp vectơ 1 n r . ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA; SC uuur uuur nên có pháp vectơ 2 n r . ° 1 2 (SAB) (SAC) cos(n ; n ) 0⊥ ⇔ = r r 2 2 2 2 2 3h 3.3h 3 3h.3h a 3( a 3) 0 27h 9h 3a 0 a 6 18h 3a h . 6 ⇔ − + − = ⇔ − − = ⇔ = ⇔ = ° Vậy: a 6 h . 6 = Trang 4 S z A z H B M y C BI 3 Câu 1: Trong không gian Oxyz cho đường thẳng (d) và mặt cầu (S): 2 2 2 2x 2y z 1 0 (d) : ; (S) :x y z 4x 6y m 0 x 2y 2z 4 0 − − + =  + + + − + =  + − − =  Tìm m để (d) cắt (S) tại hai điểm M, N sao cho MN = 8. Câu 2: Cho tứ diện OABC có đáy là DOBC vuông tại O, OB = a, OC = a 3, (a 0)> và đường cao OA a 3= . Gọi M là trung điểm cạnh BC. Tính khoảng cách giữa hai đường thẳng AB và OM. GIẢI Câu 1: Mặt cầu (S): 2 2 2 (x 2) (y 3) z 13 m− + − + = − có tâm I(-2; 3; 0), bán kính R IN 13 m= = − , với m < 13. ° Dựng IH MN MH HN 4⊥ ⇒ = = 2 2 IH IN HN 13 m 16 m 3⇒ = − = − − = − − , với m < -3. ° Phương trình tham số của đường thẳng (d): x t 1 y 1 t 2 z 1 t =    = +   = − +   ° (d) có vectơ chỉ phương 1 1 u 1; ; 1 (2; 1; 2) 2 2   = =  ÷   r và đi qua điểm A(0; 1; -1) ° AI ( 2; 2; 1); [AI; u] (3; 6; 6)= − = − uur uur r ° Khoảng cách h từ I đến đường thẳng (d): 2 2 2 2 2 2 [AI; u] 3 6 6 81 h 3. u 9 2 1 2 + + = = = = + + uur r r ° Ta có: IH = h m 3 3 m 3 9⇔ − − = ⇔ − − = m 12⇔ = − (thỏa điều kiện) ° Vậy, giá trị cần tìm: m = -12. Câu 2: Cách 1: ° Gọi N là điểm đối xứng của C qua O. ° Ta có: OM // BN (tính chất đường trung bình) ⇒ OM // (ABN) ⇒ d(OM; AB) = d(OM; (ABN)) = d(O; (ABN)). ° Dựng OK BN, OH AK (K BN; H AK)⊥ ⊥ ∈ ∈ Trang 5 H NM I ° Ta có: AO (OBC); OK BN AK BN⊥ ⊥ ⇒ ⊥ BN OK; BN AK BN (AOK) BN OH⊥ ⊥ ⇒ ⊥ ⇒ ⊥ OH AK; OH BN OH (ABN) d(O; (ABN) OH⊥ ⊥ ⇒ ⊥ ⇒ = ° Từ các tam giác vuông OAK; ONB có: 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 5 a 15 OH 5 OH OA OK OA OB ON 3a a 3a 3a = + = + + = + + = ⇒ = ° Vậy, a 15 d(OM; AB) OH . 5 = = Cách 2: ° Dựng hệ trục Oxyz, với Ox, Oy, Oz đôi một vuông góc O(0; 0; 0), A(0; 0; a 3); B(a; 0; 0), C(0; a 3; 0), a a 3 M ; ; 0 2 2    ÷   và a 3 a 3 N 0; ; 2 2    ÷   là trung điểm của AC. ° MN là đường trung bình của DABC ⇒ AB // MN ⇒ AB // (OMN) ⇒ d(AB; OM) = d(AB; (OMN)) = d(B; (OMN)). ° a a 3 a 3 a 3 OM ; ; 0 , ON 0; ; 2 2 2 2     = =  ÷  ÷     uuuur uuur ° ( ) 2 2 2 2 2 3a a 3 a 3 a 3 a 3 [OM; ON] ; ; 3; 1; 1 n 4 4 4 4 4   = = =  ÷   uuuur uuur r , với n ( 3; 1; 1) = r ° Phương trình mp (OMN) qua O với pháp vectơ n : 3x y z 0+ + = r ° Ta có: 3.a 0 0 a 3 a 15 d(B; (OMN)) 5 3 1 1 5 + + = = = + + ° Vậy, a 15 d(AB; OM) . 5 = BI 4 Câu 1: Trong không gian Oxyz cho mặt phẳng (a) : 2x – y + z – 5 = 0. Viết phương trình mặt phẳng (P) qua giao tuyến của (a) và mặt phẳng (xOy) và (P) tạo với 3 mặt phẳng tọa độ một tứ diện có thể tích bằng 36 125 . Câu 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với trọng tâm G của DABC. Đặt SG = x (x > 0). Xác định giá trị của x để góc phẳng nhị diện (B, SA, C) bằng 60 o . GIẢI Câu 1: Trang 6 z A a 3 a 3 y C N O M a x B Phương trình mặt phẳng (xOy): z = 0 ° Phương trình mặt phẳng (P) thuộc chùm xác định bởi (a) và (xOy) có dạng: m(2x – y + z – 5) – nz = 0 (P) : 2mx my (m n)z 5m 0⇔ − + + − = ° Giao điểm A, B, C của (P) và 3 trục Ox, Oy, Oz lần lượt có tọa độ: 5 5m A ; 0; 0 , B(0; 5; 0), C 0; 0; 2 m n     −  ÷  ÷ +     ° Thể tích tứ diện OABC bằng 125 36 1 1 5 5m 125 V .OA.OB.OC . .5. 6 6 2 m n 36 ⇔ = = = + m n 3m m 1, n 2 m n 3 m m n 3m m 1, n 4 + = = =   ⇔ + = ⇔ ⇒   + = − = = −   ° Vậy, có 2 phương trình mặt phẳng (P): 1 2 (P ) : 2x y 3z 5 0 (m 1; n 2) (P ) : 2x y 3z 5 0 (m 1; n 4) − + − = = =   − − − = = = −  Câu 2: . Cách 1: ° Gọi M là trung điểm của BC AM BC⇒ ⊥ (DABC vuông cân) ° Ta có: SG (ABC) SG BC⊥ ⇒ ⊥ . Suy ra: BC (SAM)⊥ ° Dựng BI SA IM SA⊥ ⇒ ⊥ và IC SA ⊥ · BIC⇒ là góc phẳng nhị diện (B; SA; C). ° SAB SAC (c.c.c)∆ = ∆ IB IC IBC⇒ = ⇒ ∆ cân tại I. ° 1 a 2 a 2 BC a 2; AM BM MC BC ; AG 2 2 3 = = = = = = ° 2 2 2 2 AM a 2 1 ax 2 AIM ~ AGS IM SG. x. . AS 2 SG AG 2a 2 x 9 ∆ ∆ ⇒ = = = + + 2 2 3ax 2 IM 2 9x 2a ⇔ = + . ° Ta có: · o BIC 60= · o o 2 2 a 2 3.3ax 2 BIM 30 BM IM.tg30 2 2 9x 2a ⇔ = ⇔ = ⇔ = + 2 2 2 2 2 2 2 2 2 9x 2a 3x 3 9x 2a 27x a 18x 2a 9x a x . 3 ⇔ + = ⇔ + = ⇔ = ⇔ = ⇔ = ° Vậy, a x . 3 = Cách 2: ° BC a 2= Trang 7 z x x y C B A E F G M G M C S I A B ° Gọi M là trung điểm BC a 2 a 2 AM ; AG 2 3 ⇒ = = ° Gọi E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuông a AG AE 2 AE AF . 3 ⇒ = ⇒ = = ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), B(a; 0; 0), C(0; a; 0), a a a a G ; ; 0 , S ; ; x 3 3 2 2      ÷  ÷     . ° a a 2a a a 2a SA ; ; x , SB ; ; x , SC ; ; x 3 3 3 3 3 3       = = − − = − −  ÷  ÷  ÷       uuur uur uuur ° 2 1 a a [SA; SB] 0; ax; a 0; x; a.n 3 3     = − = − =  ÷  ÷     uuur uur r , với 1 a n 0; x; 3   = −  ÷   r ° 2 2 a a [SA; SC] ( ax; 0; ) a x; 0; a.n , 3 3   = − = − − = −  ÷   uuur uuur r với 2 a n x; 0; 3   = −  ÷   r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA, SB uuur uur nên có pháp vectơ 1 n r ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA, SC uuur uuur nên có pháp vectơ 2 n r ° Góc phẳng nhị diện (B; SA; C) bằng 60 o . 2 o 2 2 2 2 2 2 a a a 0.x x.0 3 3 9 cos60 9x a a a 0 x x 0 9 9 9 + + ⇔ = = + + + + + 2 2 2 1 a 2 9x a ⇔ = + 2 2 2 2 2 a 9x a 2a 9x a x . 3 ⇔ = = ⇔ = ⇔ = ° Vậy, a x . 3 = BI 5 Câu 1: Trong không gian Oxyz, tìm trên Ox điểm A cách đều đường thẳng (d) : 2 2z 2 y 1 1x + == − và mặt phẳng (a) : 2x – y – 2z = 0. Câu 2: Cho hình chóp SABC có đáy ABC là tam giác đều có cạnh bằng 2a 2 , SA vuông góc với (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của cạnh AB, BC. Tính góc và khoảng cách giữa hai đường thẳng SE và AF. Trang 8 GIẢI Câu 1: Gọi A(a; 0; 0) Ox∈ . ° Khoảng cách từ A đến mặt phẳng (a) : 2 2 2 2a 2a d(A; ) 3 2 1 2 α = = + + ° (D) qua 0 M (1; 0; 2)− và có vectơ chỉ phương u (1; 2; 2)= r ° Đặt 0 1 M M u= uuuuuur r ° Do đó: d(A; D) là đường cao vẽ từ A trong tam giác 0 1 AM M 0 1 2 0 AM M 0 1 [AM ; u] 2.S 8a 24a 36 d(A; ) M M u 3 − + ⇒ ∆ = = = uuuuur r r ° Theo giả thiết: d(A; a) = d(A; D) 2 2 2 2 2 2a 8a 24a 36 4a 8a 24a 36 4a 24a 36 0 3 3 4(a 3) 0 a 3. − + ⇔ = ⇔ = − + ⇔ − + = ⇔ − = ⇔ = ° Vậy, có một điểm A(3; 0; 0). Câu 2: Cách 1: ° Gọi M là trung điểm của BF ⇒ EM // AF · · · (SA; AF) (EM; AF) SEM⇒ = = ° DSAE vuông tại A có: 2 2 2 2 2 SE SA AE a 2a 3a= + = + = SE a 3⇒ = ° 2a 2. 3 AF a 6 2 = = a 6 EM BM MF ; BF a 2 2 ⇒ = = = = ° 2 2 2 2 2 2 SB SA AB a 8a 9a SB 3a= + = + = ⇒ = ° 2 2 2 2 2 2 SF SA AF a 6a 7a SF a 7= + = + = ⇒ = ° Áp dụng định lý đường trung tuyến SM trong DSBF có: 2 2 2 2 1 SB SF 2.SM BF 2 + = + 2 2 2 2 2 2 1 15a 9a 7a 2SM .2a SM 2 2 ⇔ + = + ⇔ = ° Gọi a là góc nhọn tạo bởi SE và AF ° Áp dụng định lý hàm Côsin vào DSEM có: · 2 2 2 2 2 2 3a 15a 3a ES EM SM 2 2 2 2 cos cosSEM . 2.ES.EM 2 2 a 6 2. .a 3 2 + − + − α = = = = − = Trang 9 C S F M B E K H A o 45 .⇒ α = ° Dựng AK ME; AH SK.⊥ ⊥ Ta có: a 2 AK MF 2 = = và AH (SME)⊥ ° Vì AF // ME d(SE; AF) d(AF; (SME)) AH.⇒ = = ° DSAK vuông có: 2 2 2 2 2 2 1 1 1 1 2 3 a 3 AH 3 AH SA AK a a a = + = + = ⇒ = ° Vậy, a 3 d(SE; AF) 3 = . Cách 2: ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), B(a 2; a 6; 0), C( a 2; a 6; 0), S(0; 0; a), a 2 a 6 E ; ; 0 ; F(0; a 6; 0) 2 2 −    ÷   và a 2 M ; a 6; 0 2    ÷   . ° a 2 a 6 a 2 SE ; ; a ; AF (a; a 6; 0), SM ; a 6; a 2 2 2     = − = = −  ÷  ÷     uur uuur uuur ° Gọi a là góc nhọn tạo bởi SE và AF.ta có: 2 2 2 2 2 a 2 a 6 0. a 6. 0( a) 3a 2 2 2 cos cos(SE; AF) . 2 a 6.a 3 a 3a 0 6a 0. a 2 2 + − α = = = = + + + + uur uuur o 45 .⇒ α = ° 2 2 2 2 a 6 a 3 a 3 a 3 [SE; SM] ; 0; ( 2; 0; 1) n, 2 2 2 2   = = =  ÷   uur uuur r với n ( 2; 0; 1)= r ° Phương trình mặt phẳng (SEM) qua S với pháp vectơ n : 2x z a 0.+ − = r ° Khoảng cách từ A đến (SEM): 0 0 a a 2 d(A;SEM) 3 2 1 + − = = + ° Vì AF // EM AF //(SEM) d(SE; AF) d(A; SEM)⇒ ⇒ = ° Vậy, a 3 d(SE; AF) . 3 = ĐỀ 6 Câu 1: Trong không gian với hệ tọa độ vuông góc Oxyz cho mặt phẳng (P) và mặt cầu (S): (P): 2 2 2 2 2x 2y z m 3m 0 ; (S) : (x 1) (y 1) (z 1) 9+ + − − = − + + + − = . Trang 10 z a S A x E B M F y C . có thể tích bằng 36 125 . Câu 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với. BC a 2 a 2 AM ; AG 2 3 ⇒ = = ° Gọi E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuông a AG AE 2 AE AF . 3 ⇒ = ⇒ = = ° Dựng hệ trục

Ngày đăng: 23/10/2013, 16:15

HÌNH ẢNH LIÊN QUAN

Cho lăng trụ ABC.A'B'C' cĩ các mặt bên đều là hình vuơng cạnh a. Gọi D, F lần lượt là trung điểm các cạnh BC, C'B' - Bài tập hình học KG
ho lăng trụ ABC.A'B'C' cĩ các mặt bên đều là hình vuơng cạnh a. Gọi D, F lần lượt là trung điểm các cạnh BC, C'B' (Trang 1)
Cho hình chĩp S.ABC đáy ABC là tam giác đều cạnh a. SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) là h - Bài tập hình học KG
ho hình chĩp S.ABC đáy ABC là tam giác đều cạnh a. SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) là h (Trang 2)
Cho hình chĩp SABC cĩ đáy là tam giác ABC vuơng cân tại A, AB = AC =a (a &gt; 0), hình chiếu của S trên đáy trùng với trọng tâm G của DABC - Bài tập hình học KG
ho hình chĩp SABC cĩ đáy là tam giác ABC vuơng cân tại A, AB = AC =a (a &gt; 0), hình chiếu của S trên đáy trùng với trọng tâm G của DABC (Trang 6)
° Gọi E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuơng  - Bài tập hình học KG
i E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuơng (Trang 8)
Cho hình chĩp S.ABC cĩ đáy ABC là tam giác vuơng tại B, AB = a, BC = 2a, cạnh SA vuơng gĩc với đáy và SA = 2a - Bài tập hình học KG
ho hình chĩp S.ABC cĩ đáy ABC là tam giác vuơng tại B, AB = a, BC = 2a, cạnh SA vuơng gĩc với đáy và SA = 2a (Trang 11)
Cho hình chĩp đều S.ABC, đáy ABC cĩ cạnh bằng a, mặt bên tạo với đáy một gĩc bằng - Bài tập hình học KG
ho hình chĩp đều S.ABC, đáy ABC cĩ cạnh bằng a, mặt bên tạo với đáy một gĩc bằng (Trang 12)
° Thể tích hình chĩp S.ABC: - Bài tập hình học KG
h ể tích hình chĩp S.ABC: (Trang 13)
Cho hình lập phương ABCD . A'B'C'D' cạnh a. M, N lần lượt là trung điểm của AB và C'D' - Bài tập hình học KG
ho hình lập phương ABCD . A'B'C'D' cạnh a. M, N lần lượt là trung điểm của AB và C'D' (Trang 15)
⇒ là hình thoi. - Bài tập hình học KG
l à hình thoi (Trang 16)
° Hai hình chĩp B/A/MCN và B/.A/NC cĩ chung đường cao vẽ từ đỉnh B/ và S A MCN/=2.SA NC/ - Bài tập hình học KG
ai hình chĩp B/A/MCN và B/.A/NC cĩ chung đường cao vẽ từ đỉnh B/ và S A MCN/=2.SA NC/ (Trang 16)
Gọi K là hình chiếu vuơng gĩc của điểm I(1; -1; 1) trên (d2). Tìm phương trình tham số của đường thẳng qua K vuơng gĩc với (d1) và cắt (d1). - Bài tập hình học KG
i K là hình chiếu vuơng gĩc của điểm I(1; -1; 1) trên (d2). Tìm phương trình tham số của đường thẳng qua K vuơng gĩc với (d1) và cắt (d1) (Trang 17)
° Thể tích hình chĩp - Bài tập hình học KG
h ể tích hình chĩp (Trang 18)
2. Xét mặt phẳng (a) :x z+ 3= 0. Viết phương trình hình chiếu của (D2) theo phương (D1) lên mặt phẳng (a). - Bài tập hình học KG
2. Xét mặt phẳng (a) :x z+ 3= 0. Viết phương trình hình chiếu của (D2) theo phương (D1) lên mặt phẳng (a) (Trang 19)
⇔ M là hình chiếu củ aI trên (a) ° Phương trình đường thẳng (D) qua I  - Bài tập hình học KG
l à hình chiếu củ aI trên (a) ° Phương trình đường thẳng (D) qua I (Trang 20)

TỪ KHÓA LIÊN QUAN

w