1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận Án 2).Docx

41 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 163,06 KB

Nội dung

IHCTHINGUYN TRNGI HCSP H M NGUYNSONGH XPXN G H I MCHOBT NGTHCBINPHN VIHV HNCCNHXK H NGGIN Ngnh TonGiitchMs 9460102 TMTT LUNNTINSTONHC THINGUYN 2018 Cngtrnhc honthnhti Trn g i hcSp h m i hcThiNguyn Ngi[.]

IHCTHINGUYN TRNGI HCSP H M NGUYNSONGH XPXN G H I MCHOBT NGTHCBINPHN VIHV H NCCN H XK H NGGIN Ngnh:TonGiitchMs : 9460102 TMTT LUNNTINST O NHC THINGUYN-2018 Cngtrnhc honthnhti: Trn g i hcSp h m-i hcThiNguyn Ngihn g dnkhoahc:GS.TS.NguynBn g Phnbin1: Phnbin2: Phnbin3: Lunn sc bo vt r cHin g chmlunn cpTrn g hpti:Trngi hcSphmi hcThiNguyn Voh i gi ngy thng nm2018 Ctht mhiulun n tithv i n: - ThvinQucgiaVitNam - TrungtmhcliuihcThiNguyn - Thv i ntrn g i hc Sphm-i hcThiNguyn Mu B i to n b t ng th c bi n ph n c xu t v o nh ng n m uc a th p ni n60thkX X , gnlinvinhngnghincucaLions,Stampacchiavc ngs( L i o n s vSta mpacchia, 1965, 1967; Hartman vStampacchia, 1966).Tn nay, b tngth c bi n ph n lu nlm tchn g h i n c u m a n g t n h t h i svthuhtcsquant mc anhi u nhk h o a h c t r o n g v n g o i nc Nhi u b i to n nh : b i to n c c tr ;bitoni mbtn g ; bitoncnbng;bitonb;phn g trnhvitontn iu;bitonbincd ngcaph n g tr nho hmri ng c t h q u y vm h nhbit o n b tn g th cb i np h nd ic cg i t h i tt h chh p.V t h b it o n n yl mtcngcm nhvthngnh ttrongnghincunhiumhnhbito nlthuytv ngdngthct VitNam,theonhiuconngtipcnkhcnhau,ccnhk h o a h ccn h ng ng g p quan tr ng cho b i to n n y cthknnhc c n h m n g h i n c u c a GS.TSKH Ph m KAnh (P.K Anh vtg, 2015, 2017); GS.TSKH Phan Qu c Kh nh(P.Q Kh nh vtg, 2005, 2006); GS.TSKH.inh ThL c ( T.L c vt g , 0 , 2014);GS.TSKH.LD ngMu(L.D.Muvt g , 2005,2012);GS.TSKH.Ph mHu S ch (P.H S ch vt g , 0 , 0 ) ; G S T S K H N g u y n X u n T n ( N X T n v t g , 2012,2013);GS.TSKH.Nguynn g Yn(N Ynvt g , 2005,2008);GS.TS.N guynBn g ( N B n g v t g , 1 , , 01 , ) ; P G S T S P h m N g c A n h ( P N A n h vt g , 0 , 0 , ) ; P G S T S N g u y n Quang Huy (N.Q Huy vtg, 2011) v PGS.TS.Ng uy nT h T h u Th y (N T.T Th y vt g , ,2 ) B nc nh, b t ngthcbinphnvm tsb i tonlinquancngva n g lt inghincucanhiutcgiltins g h i ncusinhtrongnc Mhnhbitonbtngthcbinphncincdng: Tmx∗∈Csaocho: ⟨F(x∗),x−x ∗⟩≥ , ∀x∈C , (0.1)trongC l tpconlingkhcrngcakhnggianHilbert H v F: H→ H l nhxxcnhtrnH Trongt r n g h pt pC c ab it o n( ) cc h o d idngn l t pi mb t ngchung c a m t hh u h n h a y v h n c c n h xkh ng gi n thb i t o n ( ) cli n hv i n h i u b i t o n t h c t i n n h b i t o n k h i p h ct n hi u, b i to n ph n ph ib ng th ng, ki m so t n ng ln g c h o h t h n g m ng vi n th ng CDMA v k t h u t xltnhiubngtn cthn g d ngb it o nb tngth cb i np h nv oth ct i n,i hip h icnhngp hn g ph pgiis hiuqu chobito nny.Vl, mttrongnh ng h ng nghi n c u quan tr ng hi n d nhcsquan t m c a nhi u nhto n h ctrong v ngo inclvi cxu t c c ph ng ph p m i t m nghi m c a b i to n(0.1)h o c c i t i nhi uquc anhi uphngph pc Chonnayn g i t a thitl pcnhiukt h u tgiibtng thcbinphnd atrnphn g phpchiucaGoldstein(1964),Polyak(1966, 1967,1969),phngphpi m g n kc a Martinet(1970), Rokaffellar (1976), nguy n lb i t o n p h c a C o h e n ( ) , p h n g p h p h i u chnhdngBr owderT ikhonov (B r owder , 6 ; T ikhonov , 96 ), ph n g p h pi mgnkh i uc h nhc aL e h d i l i v M o u d a f i ( 9 ) , R y a z a n t s e v a ( 0 ) v p h n g p h pi mgnkquntn hdoAlvarezvAttouch(2001)xuthocdatrnmtskthuttm i m b tng nhphng ph p l p Krasnosel'skii-Mann (Mann, 1953; Krasnosel'skii,1955),phngph plpHalpern(1967)vphngphpxpxmm(Moudafi,2000) Ph ng php l pi n h nhgi i b i to n (0.1) lph ng ph p chi u gradient(Goldstein,1964;Zeidler,1990)cmt nhs a u : x0∈C, xk+1=PC(I−ρFF)(xk), k=0,1,2, (0.2) trongP Cl phpchi umtrict Hl nC ,Il nhxnvt r nH v ρFl mthngsdn g c nh Phn g ph p ( ) cc u tr cn gi n n n vi c v n d ng trongnhngtnhhungcthk h t h u ntin.Phn g php nylskthpgiavicsdngtrc tip dngngcaphpchiuP Cv p h n g phpkiun g dcnht Nhc nh ng ti n b ng k lthuy ti m b t ng c anh x kh ng gi n thk X X , phn g phplaighpng dcnhtcYamadavc ngs(Yamadav tg,1998, 1999) xu t nhl m t bi n thc a phn g p h p ng dc nh t t mcctiucamthml itrntpi mbtngchungcac cn h xkhnggin.c i m ch nh c a phn g p h p n y ld ng d ngngc a c cn h xkh ng gi n b t km t p i m b tngchung c a nlt p r ng bu c c a b i to n M t kh c, nhi ub i to n th ct ,ch ng h n b i to nxl t n hi u (Iiduka, 2010), ki m so t n ng lngchohthngmngvinthngCDMA(Iiduka,2012)hocphnphib ngthng(IidukavU c h i d a , 1 ) c t h a v b it o nt mn g h i mc ab tn g t h cb i np h ntrntpi m b t ngc a m t ho c m t hc c n h xkh ng gi n H n na,ch ng tabitrng,mitpconlin g uct h b i udindidnggiaom ccaccn a kh ng gian, dolgiaomc c a t p i m b tngc cn h xkh ng gi nlcctontchiulnnhngnakhnggianny.Vt h b itontmnghimcabt ngthcbinphn(0.1)trnmttpconlingct h q u y vv i ctmnghimbt ngth c bi n ph n tr n t pi m b tngchungc am thc cnhxkh ng gi n.Khi,mtvnt ralx cnhphn g phplpxpxn g h i mchobitonbt ngthcbinphn(0.1)nht h n onuchngtacd nghincaccn h xk h ng ginTi?(i∈Iv iIl t pchs n o).Xutphtttn g ny,nm2001,Yamada xy d ng phn g p h p l a i g h p ngd c nh t mp h n g p h p n y h i tm nh vm t th nh ph n n m t pi m b t ng chung c a hh u h n c c n h xkh ngginn g thithamnlnghimcabitonbtn g thcbinphn(0.1) Ct h ,k h i C : = F i x (T)l t pi mb tn g c am tn h x k h ngg i n,Y a m a d a thitlpcnhlh itmnhsau nhl0 ChoF : H →H ln h x l i n t cL -Lipschitzv η -n i um nht r n H C h o T:H →H lnhx kh ng g int rnH v iFix (T)=/∅.Gi s ρF ∈ ( ,2η/LL2)vd yλk( ,1]thamncciukin : ∞ ∈ l i m λ =0, (L1) k (L2) k→∞ Σ λk=∞, (L3) lim(λk−λk+1)λ−2=0 k+1 k→∞ k=1 Khi,vii mbanu tyx 0∈H ,dylpxcnhbi xk+1= T (xk)−λ k+1ρFF(T(xk)), (0.3) k=0,1,2, hitmnhtinghimduynhtx ∗c abiton (0.1) Trongtrn g hpC lt pimbtngchungcamthh uhnccn h xk h ngginT i: H → H (i= ,2,3, ,N),d yl pxo a y v ngx px n g h i mch o bit o n( ) cYamadaxy dngcd ng xk+1= T [k+1](xk)−λk+1ρFF(T[k+1](xk)), (0.4) k=0,1,2, y,[ k]:=k modNlh mmodulolygit r t r o n g {1,2,3, ,N} nhl0 ChoF :H → H l nh x lint cL -Lipschitzv η -ni um nhtr nH Ch o \N Ti:H→Hl hh uhncc nhxk h nggintrnHv iC:= Fix(Ti)/=∅v i=1 C= Fix (T1T2 TN)= Fix (T2T3 TNT1)=···= Fix (TNT1 TN−1) Gis ρF ∈(0,2η/LL2)v dyλ k∈(0,1]t h amncci uki n: (L1)l i m λk=0, (L2) Σ ∞ Σ ∞ |λk−λk+N| 1.Gi \∞ s{Ti}lhvh nmc ccnhxkhnggintrnE v i C: = Fix(Ti) ∅ i=1 Lpbito nbtn g thcbinph n,kh i ulV I P (F,C),c phtbiunhs a u : ∗ Tmx∗∈Csaocho: ⟨F(x∗),j(x−x ∗)⟩≥ , trongjl nh xing uchun t c c aE lnghimcabitonVIP∗(F,C) ∀x∈C, (1.2) i mx∗∈Cth a m n(1.2)cg i 1.3.2 Phn g phplaighp n g dcnht Trong ph n n y, ch ng t i str nh b y chi ti t m t sn g h i n c u m r n g ho c c i binphn g phplaighpn g dcnhtx pxn g h i mchobitonbtn g thcbinphncdng(0.1)hoc(1.2) KhiClt pi m b tngchung c a m thh u h n c cn h xkh ng gi n trongkhnggianHilbertth c,nm 2003,XuvKimchngminhcktqutngt nhl0 h l0 khithayth( L ) v( L ) ∗t ngn g bicci ukin (L4)limλk/Lλk+1=1 v (L4)∗limλk/Lλk+N= k→∞ k→∞ Cththy r ng,i uki n (L4) yuh n th cs(L3), h n n uki n (L4) cho ph p tact h l a c h n v i d y t h a m s c h n h t c {1/Lk}trong khi( L ) k h n g t h a m n M ∗ ∗ t khc,khngkhk h nchr a rngi ukin(L3) suyrai ukin(L4) nugiihnlimλk/Lλk+Nt nti Nm2007,Zengvc ngsxutphn g phplpxoayvng k→∞ xk+1= T [k+1](xk)−λ k+1ρFk+1F(T[k+1](xk)), k=0,1,2, (1.3) vithamsρF k+1khngphilh ngsc n h nht r o n g (0.4)vi ukint lnccdythamsl pcngc c ibinm bosh it nhl1 ChoF :H → H l nh x lint cL -Lipschitzv η -ni um nhtr nH Ch o Ti:H→H l hhuhncc nhxkhnggintrn H v iC:= TN Fix(Ti)/=∅v i=1 C= Fix (T1T2 TN)= Fix (T2T3 TNT1)=···= Fix (TNT1 TN−1)

Ngày đăng: 18/08/2023, 19:39

w