(Luận án) Về một dạng định lí cơ bản thứ hai cho đường cong nguyên và định lí không gian con schmidt đối với siêu mặt di động

118 11 0
(Luận án) Về một dạng định lí cơ bản thứ hai cho đường cong nguyên và định lí không gian con schmidt đối với siêu mặt di động

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI Nguyễn Thanh Sơn VỀ MỘT DẠNG ĐỊNH LÍ CƠ BẢN THỨ HAI CHO ĐƯỜNG CONG NGUYÊN VÀ ĐỊNH LÍ KHƠNG GIAN CON SCHMIDT ĐỐI VỚI SIÊU MẶT DI ĐỘNG LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội, 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI Nguyễn Thanh Sơn VỀ MỘT DẠNG ĐỊNH LÍ CƠ BẢN THỨ HAI CHO ĐƯỜNG CONG NGUYÊN VÀ ĐỊNH LÍ KHƠNG GIAN CON SCHMIDT ĐỐI VỚI SIÊU MẶT DI ĐỘNG Chun ngành: Hình học Tơpơ Mã số: 9.46.01.05 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TS Trần Văn Tấn Hà Nội, 2022 LỜI CAM ĐOAN Tơi cam đoan kết trình bày luận án trung thực, đăng tải tạp chí Tốn học uy tín nước quốc tế, đồng tác giả cho phép sử dụng luận án chưa cơng bố cơng trình khác Nghiên cứu sinh Nguyễn Thanh Sơn i LỜI CẢM ƠN Lời tơi xin bày tỏ lịng biết ơn chân thành, sâu sắc tới GS Trần Văn Tấn, người thầy tận tình hướng dẫn, bảo, động viên hỗ trợ tơi suốt q trình học tập nghiên cứu Tôi xin trân trọng cảm ơn Phịng Sau đại học, Khoa Tốn-Tin, Trường Đại học Sư Phạm Hà Nội, Sở GD-ĐT Thanh Hóa, Trường THPT chuyên Lam Sơn tạo điều kiện thuận lợi để tơi chun tâm học tập, nghiên cứu Đặc biệt, xin chân thành cảm ơn thầy cô, bạn nghiên cứu sinh Bộ mơn Hình học Tơ pơ có trao đổi, góp ý bổ ích học thuật, đồng nghiệp Ban giám hiệu tổ Toán trường chuyên Lam Sơn động viên, trợ giúp công việc để tơi sớm hồn thành luận án Cuối cùng, xin gửi tặng thành đạt đến gia đình người thân thay lời cảm ơn cho hy sinh, vất vả suốt trình học tập, nghiên cứu Tác giả i MỤC LỤC Lời cam đoan ii Lời cảm ơn iii Danh mục quy ước kí hiệu vi MỞ ĐẦU 1 Tổng quan 1.1 Định lí thứ hai 1.2 Định lí khơng gian Schmidt Định lí thfí hai đường cong ngun có đạo hàm cầu triệt tiêu tập tạo ảnh mục tiêu 11 2.1 Một số kiến thức chuẩn bị 11 2.1.1 Các hàm Lí thuyết Nevalinna .11 2.1.2 Toán tử Wronski Bổ đề đạo hàm Logarit cho ánh xạ chỉnh hình 13 2.1.3 Họ siêu mặt vị trí tổng quát đa tạp xạ ảnh số khái niệm liên quan 15 2.1.4 Đạo hàm cầu ánh xạ chỉnh hình 16 2.1.5 Họ chuẩn tắc ánh xạ chỉnh hình tính Brody đường cong nguyên 16 2.2 Định lí thứ hai Định lí Picard cho đường cong ngun khơng gian xạ ảnh với đạo hàm cầu triệt tiêu tập tạo ảnh i siêu mặt mục tiêu .17 2.2.1 Trọng Nochka ứng với hệ vectơ 17 2.2.2 Định lí thứ hai kiểu Nochka cho siêu mặt Định lí Picard 18 2.2.3 Một tiêu chuẩn Brody cho đường cong nguyên 28 2.3 Định lí thứ hai cho đường cong nguyên đa tạp xạ ảnh có đạo hàm triệt tiêu tập ảnh ngược siêu mặt mục tiêu .30 2.3.1 Một số bổ đề 30 2.3.2 Một dạng định lí thứ hai không ngắt bội 30 Định lí khơng gian Schmidt siêu mặt di động giao đa 38 tạp đại số xạ ảnh 3.1 Một số kiến thức chuẩn bị 38 3.1.1 Định giá trường số 38 3.1.2 Chuẩn hóa định giá cơng thức tích .40 3.1.3 Độ cao Logarit hàm 41 3.1.4 Họ siêu phẳng, siêu mặt di động tập số .43 3.2 Định lí không gian Schmidt siêu mặt di động giao đa tạp đại số xạ ảnh 45 3.2.1 Một số bổ đề 46 3.2.2 Chứng minh Định lí 3.2.1 63 Kết luận kiến nghị 68 Danh mục cơng trình cơng bố liên quan đến luận án 70 71 TÀI LIỆU THAM KHẢO v DANH MỤC CÁC QUY ƯỚC VÀ KÍ HIỆU Các kí hiệu sau thống tồn luận án Pn(C): khơng gian xạ ảnh phức n chiều = = ∥z∥ ∥f ∥ |z1|2 + · · · + | zm| với z = (z1, , zm) ∈ Cm |f0| + · · · + | fn | với (f0 : · · · : fn) ∈ Pn 1/2 1/2 (C) biểu diễn rút gọn f o(r): vô bé bậc cao r r → +∞ O(r): vô lớn bậc với r r → +∞ O(1): hàm bị chặn r log +x = max{log x, 0}, x > “ ∥ P ”: có nghĩa mệnh đề P với r ∈ [0, +∞) nằm tập Borel E [0, +∞) thoả mãn ∫ dr < +∞ E #S: lực lượng tập hợp S BCNN {d1, , dq}: bội số chung nhỏ số nguyên dương d1, , dq deg D: bậc đa thức xác định siêu mặt D PM (k): không gian xạ ảnh M -chiều trường k Mk: tập tất lớp tương đương định giá trường k ∥.∥v: chuẩn hóa định giá v k h(x): độ cao logarit x, với x ∈ k λHj ,v : hàm Weil ứng với siêu phẳng Hj định giá v NS(Hj, x): hàm đếm (tương ứng với hàm đếm lí thuyết Nevanlinna) f #: đạo hàm cầu f v Hol(X, Y ): tập ánh xạ chỉnh hình từ X vào Y E: Hàm độ dài đa tạp X v Mở đầu Lí chọn đề tài Lí thuyết phân bố giá trị hay cịn gọi Lí thuyết Nevanlinna, hình thành từ nghiên cứu Nevanlinna [24] phân bố giá trị hàm phân hình biến phức công bố vào năm 1925 Các kết Nevanlinna nhanh chóng nhiều nhà tốn học mở rộng sang trường hợp chiều cao nhiều biến như: A Bloch [6] xem xét vấn đề với đường cong chỉnh hình đa tạp Abel; Cartan [7] mở rộng kết Nevanlinna tới trường hợp đường cong nguyên không gian xạ ảnh phức; H Weyl , J Weyl [44] Ahlfors [4] đưa cách tiếp cận hình học; Stoll [37, 38] mở rộng sang trường hợp ánh xạ phân hình từ khơng gian parabolic vào đa tạp xạ ảnh Nội dung Lí thuyết Nevanlinna đưa mối quan hệ hàm đặc trưng (đo lan tỏa ảnh ánh xạ) với hàm đếm giao điểm ảnh ánh xạ với mục tiêu Cốt lõi Lí thuyết Nevanlinna nằm hai định lí thường gọi Định lí thứ Định lí thứ hai Ở đó, Định lí thứ đưa chặn cho hàm đặc trưng hàm đếm, cịn Định lí thứ hai đưa chặn cho hàm đặc trưng tổng hàm đếm ứng với mục tiêu Với Định lí thứ nhất, ta nhìn hệ Cơng thức Jensen ngày có hiểu biết thỏa đáng Tuy nhiên, với Định lí thứ hai thiết lập cho không nhiều trường hợp Trước thập kỷ 80 kỷ 20, Định lí thứ hai thiết lập chủ yếu cho trường hợp mà mục tiêu siêu phẳng không gian xạ ảnh phức Sang thập kỷ 80, số nhà toán học phát mối liên hệ sâu sắc Lí thuyết Nevanlinna với Lí thuyết xấp xỉ Diophantine mà khởi đầu từ cơng trình Osgood [27] cơng bố năm 1981, sau Vojta nhiều chuyên gia khác thuộc hai lĩnh vực tiếp tục làm rõ thêm Năm 1987, báo [43], Vojta lập bảng tương ứng khái niệm kết thuộc hai lĩnh vực mà ngày thường gọi từ điển Vojta Theo đó, Định lí thứ hai tương ứng với Định lí khơng gian Schmidt Lí thuyết xấp xỉ Diophantine Khơng có tương đồng khái niệm kết quả, hai lí thuyết cịn có bổ trợ lẫn phương pháp giải vấn đề Sự bổ trợ qua lại làm cho hai lí thuyết đạt thành tựu bật giai đoạn từ đầu kỷ 21 đến nay, thiết lập nhiều Định lí thứ hai Định lí khơng gian Schmidt cho trường hợp mục tiêu siêu mặt Tiêu biểu kết Corvaja-Zannier [10], Evertse-Ferretti [15, 16], Ru [31, 32], Dethloff-Trần Văn Tấn [12, 11], DethloffTrần Văn Tấn-Đỗ Đức Thái [13], Sĩ Đức Quang [29] Trong dịng chảy sơi động đó, chọn đề tài nghiên cứu: Về dạng Định lí thfí hai cho đường cong nguyên Định lí khơng gian Schmidt siêu mặt di động Mục đích nghiên cfíu Trước tiên, luận án thiết lập Định lí thứ hai cho đường cong nguyên đa tạp đại số có đạo hàm cầu triệt tiêu tập tạo ảnh mục tiêu ứng dụng việc xây dựng tính Brody đường cong Tiếp theo, luận án thiết lập Định lí khơng gian Schmidt ứng với họ siêu mặt di động giao đa tạp đại số xạ ảnh Đối tượng phạm vi nghiên cfíu Luận án nghiên cứu Định lí khơng gian Schmidt, Định lí thứ hai, đường cong Brody toán họ chuẩn tắc ánh xạ chỉnh hình Đề tài luận án nghiên cứu phạm vi Lí thuyết xấp xỉ Diophantine Lí thuyết Nevanlinna cho đường cong nguyên không gian xạ ảnh Phương pháp nghiên cfíu Các vấn đề đặt luận án giải cách kế thừa phát triển phương pháp Hình học đại số, Lí thuyết xấp xỉ

Ngày đăng: 17/08/2023, 23:11

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan